Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Commun Signal ; 21(1): 364, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129926

RESUMEN

The association between capsaicin, the major natural pungent compound of chili peppers, and gastric cancer progression has engendered conflicting findings. In this work, we sought to explore the character of a high capsaicin diet in gastric cancer metastasis and its possible mechanism. The impact of high capsaicin consumption on gastric cancer metastasis was investigated in vivo (xenograft mouse and zebrafish models) and in vitro (biochemical and molecular assays). It was demonstrated that high diet of capsaicin gave rise to accelerate tumor metastasis, which was partially mediated by elevating the expression of transient receptor potential vanilloid 1 (TRPV1) in gastric cancer cells. Importantly, we found that genetic depletion of TRPV1 could reduce gastric cancer metastasis by diminishing the motility of tumor cells in vitro, but acted poorly in xenograft mouse model. Considering the distribution of capsaicin in vivo, 16S rRNA sequencing and fecal microbiota transplantation (FMT) were used to appraise whether the gut microbiota involved in the high capsaicin diet induced metastasis. It was demonstrated that the level of Firmicutes and Clostridiales was expressively boosted following the high consumption of capsaicin. This microbial shift contributed to the increased peripheral 5-hydroxytryptamine (5-HT) levels, yielding the aggravated metastatic burden. Collectively, our findings highlighted the potential risk of high capsaicin diet in promoting gastric cancer metastasis by virtue of modulating TRPV1 expression and gut microbiota composition, indicating the importance of controlled consumption of chili peppers for patients with gastric cancer. Video Abstract.


Asunto(s)
Antineoplásicos , Microbioma Gastrointestinal , Neoplasias Gástricas , Canales de Potencial de Receptor Transitorio , Humanos , Animales , Ratones , Capsaicina/farmacología , ARN Ribosómico 16S , Pez Cebra/metabolismo , Canales Catiónicos TRPV/metabolismo , Proteínas de Pez Cebra/metabolismo
2.
J Pharm Anal ; 14(7): 100934, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39139999

RESUMEN

Recent studies have shown that stress can substantially facilitate breast cancer metastasis, which can be reduced by nonselective ß1/ß2-adrenergic receptor (ß1/ß2-AR) blocker. However, several side effects were identified. Thus, it is extremely warranted to explore more effective and better-tolerated ß2-AR blocker. Currently, we demonstrated that baicalin (BA), a major bioactive component of Scutellaria baicalensis Georgi, could significantly attenuate stress hormones especially epinephrine (Epi)-induced breast cancer cell migration and invasion in vitro. Mechanistically, we identified that ß2-AR was a direct target of BA via the drug affinity responsive target stability (DARTS) combined with mass spectrum assay, and BA photoaffinity probe with pull-down assay, which was further confirmed by a couple of biophysical and biochemical assays. Furthermore, we demonstrated that BA could directly bind to the Phe-193 and Phe-289 of ß2-AR, subsequently inhibit cyclic adenosine monophosphate-protein kinase A-focal adhesion kinase (cAMP-PKA-FAK) pathway, and thus impede epithelial-mesenchymal transition (EMT), thereby hindering the metastatic progression of the chronic stress coupled with syngeneic and xenograft in vivo orthotopic and tail vein mouse model. These findings firstly identify BA as a potential ß2-AR inhibitor in the treatment of stress-induced breast cancer metastasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA