Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 22(24): 10003-10009, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36480450

RESUMEN

Functional nanomaterials offer an attractive strategy to mimic the catalysis of natural enzymes, which are collectively called nanozymes. Although the development of nanozymes shows a trend of diversification of materials with enzyme-like activity, most nanozymes have been discovered via trial-and-error methods, largely due to the lack of predictive descriptors. To fill this gap, this work identified eg occupancy as an effective descriptor for spinel oxides with peroxidase-like activity and successfully predicted that the eg value of spinel oxide nanozymes with the highest activity is close to 0.6. The LiCo2O4 with the highest activity, which is finally predicted, has achieved more than an order of magnitude improvement in activity. Density functional theory provides a rationale for the reaction path. This work contributes to the rational design of high performance nanozymes by using activity descriptors and provides a methodology to identify other descriptors for nanozymes.


Asunto(s)
Nanoestructuras , Óxidos , Óxido de Aluminio , Óxido de Magnesio , Catálisis
2.
J Pharmacol Sci ; 148(1): 116-124, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34924115

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease with increased M1 macrophages. The classical activated M1 macrophages produce various cytokines to control inflammation. Wilforlide A is a natural product that displays anti-inflammatory activities. However, the effect of Wilforlide A on RA progression and the potential mechanisms are unclear. Herein, the collagen-induced arthritis (CIA) mouse was used as an experimental model of RA. The administration of Wilforlide A reduced clinical scores, joint swelling and histological damage in ankle joints of RA mice. The secreted pro-inflammatory factors (MCP1, GM-CSF and M-CSF) and M1 biomarker iNOS in synovium were inhibited by Wilforlide A. In vitro, macrophages deriving from THP-1 cells were stimulated with LPS/IFN-γ to mimic M1 polarization. Similarly, Wilforlide A blocked macrophages polarizing towards M1 subsets. The in vitro results demonstrated that Wilforlide A suppressed LPS/IFN-γ-induced TLR4 upregulation, IκBα degradation and NF-κB p65 activation. In addition, TAK242 (a TLR4 inhibitor) treatment caused a similar inhibitory effect on M1 polarization with Wilforlide A, whereas it was less than the combination of TAK242 and Wilforlide A. Therefore, this work supports that Wilforlide A ameliorates M1 macrophage polarization in RA, which is partially mediated by TLR4/NF-κB signaling pathway inactivation.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Polaridad Celular/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Ácido Oleanólico/análogos & derivados , Fitoterapia , Animales , Antiinflamatorios , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Mediadores de Inflamación/metabolismo , Macrófagos/clasificación , Macrófagos/metabolismo , Masculino , Ratones Endogámicos DBA , FN-kappa B/metabolismo , Ácido Oleanólico/farmacología , Ácido Oleanólico/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Membrana Sinovial/citología , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Receptor Toll-Like 4/metabolismo
3.
Angew Chem Int Ed Engl ; 61(46): e202207845, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36106432

RESUMEN

Innovative bimetallic materials provide more possibilities for further improving the performance of oxygen evolution reaction (OER) electrocatalysts. However, it is still a great challenge to rationally design bimetallic catalysts because there is not a practical way to decouple the factors influencing the intrinsic activity of active sites from others, thus hindering in-depth understanding of the mechanism. Herein, we provide a rational design of bimetallic Ni, Co two-dimensional polymer model OER catalyst. The well-defined architecture, identical density of active sites and monolayer characteristic allow us to decouple the intrinsic activity of active sites from other factors. The results confirmed that the relative position and local coordination environment has significant effect on the synergistic effect of the bimetallic centres. The highest electrocatalytic activity with the turnover frequency value up to 26.19 s-1 was achieved at the overpotential of 500 mV.

4.
Chem Sci ; 14(24): 6780-6791, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37350812

RESUMEN

A single stimulus leading to multiple responses is an essential function of many biological networks, which enable complex life activities. However, it is challenging to duplicate a similar chemical reaction network (CRN) using non-living chemicals, aiming at the disclosure of the origin of life. Herein, we report a nanozyme-based CRN with feedback and feedforward functions for the first time. It demonstrates multiple responses at different modes and intensities upon a single H2O2 stimulus. In the two-electron cascade oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), the endogenous product H2O2 competitively inhibited substrates in the first one-electron oxidation reaction on a single-atom nanozyme (Co-N-CNTs) and strikingly accelerated the second one-electron oxidation reaction under a micellar nanozyme. As a proof-of-concept, we further confined the nanozymatic network to a microfluidic chip as a simplified artificial cell. It exhibited remarkable selectivity and linearity in the perception of H2O2 stimulus against more than 20 interferences in a wide range of concentrations (0.01-100 mM) and offered an instructive platform for studying primordial life-like processes.

5.
Adv Mater ; 34(39): e2205324, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35953446

RESUMEN

Extensive efforts are devoted to refining metal sites for optimizing the catalytic performance of single-atom nanozymes (SANzymes), while the contribution of the defect environment of neighboring metal sites lacks attention. Herein, an iron-based SANzyme (Fe-SANzyme) is rationally designed by edge-site engineering, which intensively exposes edge-hosted defective Fe-N4 atomic sites anchored in hierarchical mesoporous structures. The Fe-SANzyme exhibits excellent catalase-like activity capable of efficiently catalyzing the decomposition of H2 O2 into O2 and H2 O, with a catalytic kinetic KM value superior to that of natural catalase and reported nanozymes. The mechanistic studies depict that the defects introduce notable charge transfer from the Fe atom to the carbon matrix, making the central Fe more activated to strengthen the interaction with H2 O2 and weaken the OO bond. By performing catalase-like catalysis, the Fe-SANzyme significantly scavenges reactive oxygen species (ROS) and alleviates oxidative stress, thus eliminating the pathological angiogenesis in animal models of retinal vasculopathies without affecting the repair of normal vessels. This work provides a new way to refine SANzymes by engineering the defect environment and geometric structure around metal sites, and demonstrates the potential therapeutic effects of the nanozyme on retinal vasculopathies.


Asunto(s)
Carbono , Hierro , Animales , Carbono/química , Catalasa/química , Catálisis , Hierro/química , Especies Reactivas de Oxígeno
6.
Neural Regen Res ; 11(12): 2018-2024, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28197201

RESUMEN

Tuina is a traditional Chinese treatment for sensory disturbances caused by peripheral nerve injury and related diseases. Our previous studies showed that tuina regulates relevant regions and indices of the spinal dorsal horn using the Dian, Bo, and Rou method in Yinmen (BL37), Yanglingquan (GB34), and Weizhong (BL40). Treatment prevents muscle atrophy, protects spinal cord neurons, and promotes sciatic nerve repair. The mechanisms of action of tuina for treating peripheral nerve injury remain poorly understood. This study established rat models of sciatic nerve injury using the crushing method. Rats received Chinese tuina in accordance with the principle of "Three Methods and Three Points," once daily for 20 days. Tuina intervention reduced paw withdrawal latency and improved wet weight of the gastrocnemius muscle, as well as promoting morphological recovery of sciatic nerve fibers, Schwann cells, and axons. The protein expression levels of phospho-p38 mitogen-activated protein kinase, tumor necrosis factor-α, and interleukin-1ß also decreased. These findings indicate that "Three Methods and Three Points" promoted morphological recovery and improved behavior of rats with peripheral nerve injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA