Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Phys Chem Chem Phys ; 26(13): 9963-9974, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38477114

RESUMEN

Exploration of the photolytic dynamics of sulfurous compounds is essential, eventually contributing not only to our comprehension of their fundamental organic chemistry but also shedding light on astrophysical implications. This study aims to investigate two astrochemically relevant sulfur-containing molecules, namely, thiourea (TU) and its N-methylated counterpart, N-methyl thiourea (NMTU), in cryogenic matrices. These molecules were deposited both in solid Ar and in a quantum host, specifically in solid para-H2 matrices, with the latter exhibiting unique properties. The deposited matrices were exposed to a series of UV laser irradiation at various wavelengths to investigate the decomposition paths of TU and NMTU. As a result of the UV photolysis, a plethora of degradation products could be observed in every case. Based on the presence of these product molecules, some considerations can be made regarding the decomposition mechanism of the parent molecules. The use of different matrices allowed for assessing their influence on the decay mechanism, while applying tunable laser light provided insights into the wavelength dependency of the processes.

2.
J Chem Phys ; 160(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38214387

RESUMEN

There is an ongoing debate on the apparent depletion of sulfur in the interstellar medium (ISM) compared to its universal abundance; therefore, the investigation of sulfurous compounds at low temperatures is of utmost importance. This work aims to study thioacetamide, H3C-C(=S)-NH2, in low-temperature inert Ar and para-H2 matrices by IR spectroscopy. The samples have been exposed to various sources of irradiation, such as Lyman-α or laser UV photons as well as energetic electrons. Using different host materials enabled assessing the matrix's impact on precursor decomposition. The response of the molecule to different types of irradiation has also been evaluated. The existence of three main decomposition channels were deduced: formation of (i) CH3, CH4, and HNCS; (ii) H2S and H2C=C=NH; and (iii) NH3 and H2C=C=S. The H3C-CN and H3C-NC isomers of H2C=C=NH could also be identified. Secondary products such as HNC and HCN were also detected in the quantum solid para-H2 in contrast to the more rigid Ar matrix. The listed decomposition products have been observed in the ISM, with the exception of H2C=C=NH and H3C-NC. The results point to the potential sensitivity of the precursor molecule to energetic radiation in space environments. Finally, the findings of this work will serve as a foundation for future irradiation experiments using the astrochemically more relevant pure thioacetamide ice.

3.
J Chem Phys ; 160(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38205854

RESUMEN

The α-hydroxyethyl radical (CH3·CHOH, 2A) is a key intermediate in ethanol biochemistry, combustion, atmospheric chemistry, radiation chemistry, and astrochemistry. Experimental data on the vibrational spectrum of this radical are crucially important for reliable detection and understanding of the chemical dynamics of this species. This study represents the first detailed experimental report on the infrared absorption bands of the α-hydroxyethyl radical complemented by ab initio computations. The radical was generated in solid para-H2 and Xe matrices via the reactions of hydrogen atoms with matrix-isolated ethanol molecules and radiolysis of isolated ethanol molecules with x rays. The absorption bands with maxima at 3654.6, 3052.1, 1425.7, 1247.9, 1195.6 (1177.4), and 1048.4 cm-1, observed in para-H2 matrices appearing upon the H· atom reaction, were attributed to the OHstr, α-CHstr, CCstr, COstr + CCObend, COstr, and CCstr + CCObend vibrational modes of the CH3·CHOH radical, respectively. The absorption bands with the positions slightly red-shifted from those observed in para-H2 were detected in both the irradiated and post-irradiation annealed Xe matrices containing C2H5OH. The results of the experiments with the isotopically substituted ethanol molecules (CH3CD2OH and CD3CD2OH) and the quantum-chemical computations at the UCCSD(T)/L2a_3 level support the assignment. The photolysis with ultraviolet light (240-300 nm) results in the decay of the α-hydroxyethyl radical, yielding acetaldehyde and its isomer, vinyl alcohol. A comparison of the experimental and theoretical results suggests that the radical adopts the thermodynamically more stable anti-conformation in both matrices.

4.
J Phys Chem A ; 126(18): 2832-2844, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35467858

RESUMEN

It is now well-accepted in astrochemistry that the formation of interstellar H2 is taking place on the surface of interstellar grains. It has also been suggested a long time ago that polyaromatic hydrocarbons (PAHs) can catalyze this process by subsequent H atom addition and H abstraction reactions. Recent quantum chemical computations suggested that small heterocycles can be better catalysts than PAHs. In this study, the reaction of H atoms with furan, 2,3- and 2,5-dihydrofurans, and tetrahydrofuran were studied in solid para-H2 at 3.1 K. The reactions were followed by Fourier transform infrared (FTIR) spectroscopy. By the analysis of spectra, 2-hydrofuran-3-yl, 3-hydrofuran-2-yl, 2,3,4-trihydrofuran-5-yl, and 2,3,5-trihydrofuran-4-yl radicals were identified among the products. The experiments revealed that all the possible H atom addition and H abstraction cycles connecting furan and tetrahydrofuran proceed effectively in both directions at a low temperature. This indicates the possible important role of small heterocycles in interstellar H2 formation. Furthermore, it also indicates that, in the case of H atom excess, a quasi-equilibrium exists between the c-C4HxO (x = 4-8) species, and the ratios of these species in an astrophysical object are determined by the rate of the different H atom addition and H abstraction reaction steps.

5.
Chemistry ; 27(15): 4939-4945, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33368689

RESUMEN

The identification of silicon-substituted, complex organics carrying multiple functional groups by classical infrared spectroscopy is challenging because the group frequencies of functional groups often overlap. Photoionization (PI) reflectron time-of-fight mass spectrometry (ReTOF-MS) in combination with temperature-programmed desorption (TPD) holds certain advantages because molecules are identified after sublimation from the matrix into in the gas phase based on distinct ionization energies and sublimation temperatures. In this study, we reveal the detection of 1-silaglycolaldehyde (HSiOCH2 OH), 2-sila-acetic acid (H3 SiCOOH), and 1,2-disila-acetaldehyde (H3 SiSiHO)-the silicon analogues of the well-known glycolaldehyde (HCOCH2 OH), acetic acid (H3 CCOOH), and acetaldehyde (H3 CCHO), in the gas phase after preparation in silane (SiH4 )-carbon dioxide ices exposed to energetic electrons and subliming the neutral reaction products formed within the ices into the gas phase.

6.
J Am Chem Soc ; 141(29): 11614-11620, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31246013

RESUMEN

Formamide (H2NCHO) is the smallest molecule possessing the biologically important amide bond. Recent interstellar observations have shown a strong correlation between the abundance of formamide and isocyanic acid (HNCO), indicating that they are likely to be chemically related, but no experiment or theory explains this correlation satisfactorily. We performed H + H2NCHO reactions in a para-hydrogen quantum-solid matrix host and identified production of H2NCO and HNCO from hydrogen-abstraction reactions. We identified also D2NCO, DNCO, HDNCO, and HDNCHO from the reaction H + D2NCHO, indicating the presence of hydrogen-addition reactions of DNCO and HDNCO. From the observed temporal profiles of H2NCHO, H2NCO, HNCO, and their deuterium isotopologues, we showed that a dual-cycle consisting of hydrogen abstraction and hydrogen addition can satisfactorily explain the quasi-equilibrium between H2NCHO and HNCO and explain other previous experimental results. Furthermore, this mechanism also indicates that the catalytic formation of H2 from H atoms might occur in interstellar ice grains.

7.
Phys Chem Chem Phys ; 21(31): 17063-17071, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31276124

RESUMEN

Rotamerization of a hydroxyl (O-H) group by tunneling is well-known and has been extensively studied. On the other hand, similar tunneling processes for the thiol (S-H) group have not been reported yet. In this work, the imino-thiol forms of thioacetamide were studied in cryogenic matrices (Ar, Xe) after UV-irradiation of the common amino-thione form of the compound. Four different imino-thiol forms were generated, corresponding to the cis or trans thiol (C/T) conformers of the two imino isomers (syn and anti; s/a). Noteworthy, the syn-cis (sC) imino-thiol form was found to convert spontaneously to the syn-trans (sT) form (with a half-life of 80 min), in a process whose reaction rate is independent of the temperature (i.e., at 11 or 20 K). Such conformational transformation represents the first experimental observation of an S-H rotamerization occurring by tunneling. Computations based on the Wentzel-Kramers-Brillouin formalism predict a tunneling half-life for the S-H rotamerization of syn-imino sC to sT on the time scale of minutes, in agreement with the experimental observations.

8.
Phys Chem Chem Phys ; 21(45): 24935-24949, 2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31701978

RESUMEN

An imino group was used for the first time as a vibrational antenna to manipulate molecular conformations. Imino-thiol isomers of thioacetamide were generated upon UV-irradiation of its amino-thione tautomer isolated in argon matrices at 11 K. Selective and reversible conformational isomerizations were induced by narrowband near-IR irradiation tuned at the frequencies of the 2ν(NH) first stretching overtone of each imino-thiol isomer. The conformational isomerization concerns the change in the orientation of a remote -SH group, while the orientation of the imino (C[double bond, length as m-dash]NH) group remains the same. Supported by quantum chemical anharmonic computations, this allowed for a reliable, isomer-selective vibrational assignment of the four imino-thiol isomers extending now over the full mid-IR and near-IR ranges. It was found that the experimental IR intensities of the 2ν(NH) first stretching overtones (computed 4-5 km mol-1) of the imino-thiol forms are comparable to those of the ν(NH) stretching fundamentals (computed 2-4 km mol-1). This is the first time such a phenomenon is reported for an imine molecule. The kinetics of conformational isomerization was monitored in situ, indicating that the irradiation-induced processes are significantly faster than the tunneling-driven spontaneous cis-trans rotamerization of the -SH group. Quantum yields for the rotamerizations of the -SH group resulting from the vibrational excitation of a remote -NH group were estimated and found to be comparable to those observed for matrix-isolated carboxylic acids and amino acids, where conformational changes of the -OH group were induced by the direct vibrational excitation of 2ν(OH) first stretching overtones.

9.
J Phys Chem A ; 123(51): 10947-10960, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31790245

RESUMEN

The B̃-X̃ laser-induced fluorescence (LIF) and dispersed fluorescence (DF) spectra of the atmospherically important ß-monofluoro ethoxy (MFEO), ß,ß-difluoro ethoxy (DFEO), and ß,ß,ß-trifluoro ethoxy (TFEO) radicals were recorded with vibronic resolution under jet-cooled conditions. To simulate the spectra, Franck-Condon factors were obtained from quantum chemical computations carried out at the CAM-B3LYP/6-311++G(d,p) level of theory. The simulations reproduce well both the LIF and DF spectra. Both conformers (G and T) of MFEO and one (G) of the two conformers of DFEO contribute to the LIF spectrum. A comparison between the experimental and calculated spectra confirms the expected long-range field effects of the CHxF3-x group on electronic transition energies and bond strengths, especially in the excited electronic (B̃) state. Although TFEO has only one conformer, its LIF spectrum is highly congested, which is attributed to the interaction between CO stretch and the -CF3 internal rotation.

10.
J Phys Chem A ; 122(4): 1034-1044, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29301084

RESUMEN

The photochemical decomposition of 1,2,4-oxadiazole-3,5-diamine and 1,2,4-thiadiazole-3,5-diamine was investigated in low-temperature Ar and Kr matrixes at different wavelengths. The analysis of matrix-isolation infrared (MI-IR) spectra aided by high-level quantum chemical computations showed not only that these photochemical reactions yield [NH2, C, N, X] (X = O, S) isomers but also that the bands of a novel, formerly unobserved species were observed. The comparison of computed IR spectra of potential products with the observed spectra suggests that these species are the diazenecarbaldehyde (HNNCHO) and diazenecarbothialdehyde (HNNCHS). Neither of the reactive HNNCHO and HNNCHS molecules was observed experimentally before. Both molecules are identified in the matrix as a complex with the other photoproduct, NH2CN. Comparison of the present experiments with former photochemical experiments on 1,2,5-oxadiazole-3,4-diamine and 1,2,5-thiadiazole-3,4-diamine and the analysis of the rate of formation of the different photoproducts indicate that HNNCHO and HNNCHS are formed in a different reaction path than H2NNCX and H2NC(NX) (X = O, S), and not by photoisomerization from these latter products.

11.
J Chem Phys ; 148(4): 044303, 2018 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-29390807

RESUMEN

The first observation of the higher-energy conformer of tribromoacetic acid (trans-TBAA) is reported. The conformer was produced in cryogenic matrices (Ar, Kr, and N2) by in situ selective narrowband near-infrared excitation of the lower-energy cis-TBAA conformer and characterized both structurally and vibrationally. The novel trans-TBAA conformer is shown to spontaneously decay to the most stable cis-TBAA form in all studied matrix media, by tunneling, and the measured decay rates in the different matrices were compared with those of the trans conformers of other carboxylic acids in similar experimental conditions. In the N2 matrix, where trans-TBAA establishes a specific stabilizing intermolecular interaction with the host N2 molecules via its OH group and is about 11 times more stable than in rare gas matrices, the effect of changing the irradiation wavenumber within the 2νOH absorption profile was investigated in detail. An interesting phenomenon of matrix-site changing mediated by conformational conversion was observed in the N2 matrix: vibrational excitation of cis-TBAA in the 2νOH wavenumber range predominantly converts the molecules located in a specific "matrix site" into trans-TBAA; then, relaxation (by tunneling) of the produced higher-energy conformer back to the cis form populates almost exclusively another "matrix site." The experimental studies received support from quantum chemistry calculations, which allowed a detailed characterization of the relevant regions of the potential energy surface of the molecule and the detailed assignment of the infrared spectra of the two conformers in the various matrices.

12.
Chemphyschem ; 18(8): 882-889, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28129476

RESUMEN

Exploiting photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) combined with electronic structure calculations, it is shown that the hitherto elusive silylketene molecule (H3 SiC(H)=C=O)-the isovalent counterpart of the well-known methylketene molecule-is forming via interaction of energetic electrons with low-temperature silane-carbon monoxide ices. In combination with the infrared spectroscopically detected triplet dicarbon monoxide reactant, electronic structure calculations suggest that dicarbon monoxide reacts with silane via a de facto insertion of the terminal carbon atom into a silicon-hydrogen single bond. This is followed by non-adiabatic reaction dynamics triggered by the heavy silicon atom intersystem crossing from the triplet to the singlet manifold, eventually leading to the formation of silylketene. The non-equilibrium nature of the elementary reactions within the exposed ices results in an exciting and novel chemistry which cannot be explored via traditional preparative chemistry. Since the replacement of hydrogen in silane can introduce side groups such as silyl or alkyl, the reaction of triplet dicarbon monoxide with silane represents the parent system for a previously disregarded reaction class revealing an elegant path to access the largely reactive group of silylketenes.

13.
J Phys Chem A ; 121(18): 3392-3400, 2017 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-28423274

RESUMEN

Long-range intramolecular vibrational energy redistribution (IVR) driven conformational changes were investigated in a matrix-isolated open-chain, asymmetrical dicarboxylic acid, E-glutaconic acid. Although the analysis was challenging due to the presence of multiple backbone conformers and short lifetimes of the prepared higher energy cis conformers, it was shown that the selective excitation of the O-H stretching overtone of one of the carboxylic groups can induce the conformational change (trans to cis) of the other carboxylic group, located at the other end of the E-glutaconic acid molecule. This is a direct proof that the IVR process can act through eight covalent bonds in a flexible molecule before the excess energy completely dissipates into the matrix. The lifetime of the prepared higher energy conformers (averaged over the different backbones) was measured to be 12 s.

14.
J Chem Phys ; 146(2): 024305, 2017 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-28088164

RESUMEN

The [NH2, C, N, O] and the [NH2, C, N, S] molecular systems were investigated by computational and matrix-isolation spectroscopic methods. The determination of the equilibrium structures and relative energies by CCSD(T) method was followed by the computation of the harmonic and anharmonic vibrational wavenumbers, infrared intensities, relative Raman activities, and UV excitation energies. These computed data were used to assist the identification of products obtained by UV laser photolysis of 3,4-diaminofurazan and 3,4-diaminothiadiazole in low-temperature Ar and Kr matrices. It is shown that two open-chain H2NNCX and H2NCNX and one cyclic H2NC(NX) (X = O, S) isomers are generated in the case of both systems. Except for H2NNCO and H2NCNS, the present study reports the first generation and spectroscopic identification of these compounds.

15.
Inorg Chem ; 55(17): 8776-85, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27513820

RESUMEN

A novel approach for the synthesis and identification of higher silanes (SinH2n+2, where n ≤ 19) is presented. Thin films of (d4-)silane deposited onto a cold surface were exposed under ultra-high-vacuum conditions to energetic electrons and sampled on line and in situ via infrared and ultraviolet-visible spectroscopy. Gas phase products released by fractional sublimation in the warm-up phase after the irradiation were probed via a reflectron time-of-flight mass spectrometer coupled with a tunable vacuum ultraviolet photon ionization source. The formation mechanisms of (higher) silanes were investigated by irradiating codeposited 1:1 silane (SiH4)/d4-silane (SiD4) ices, suggesting that both radical-radical recombination and radical insertion pathways contribute to the formation of disilane along with higher silanes up to nonadecasilane (Si19H40).

16.
J Phys Chem A ; 119(11): 2429-37, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25222382

RESUMEN

The structures of glycine·H2O complexes have been reinvestigated in low-temperature inert matrices. To go beyond the former matrix-isolation IR studies, NIR laser irradiation was used to change the relative abundances of the different complexes in the matrix. It is shown that the irradiation of the first overtone of the OH stretching mode of glycine as well as of the first overtone of the OH stretching mode of the water molecule in the complex can induce structural changes. Comparison of the experimental IR spectra with the IR spectra computed for different structures resulted in more reliable assignments of spectral patterns and identification of more structures than in former studies.


Asunto(s)
Argón/química , Glicina/química , Rayos Láser , Agua/química , Estructura Molecular , Teoría Cuántica , Temperatura
17.
Chirality ; 27(9): 625-34, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26087405

RESUMEN

The rotational strengths and the robustness values of amide-I and amide-II vibrational modes of For(AA)n NHMe (where AA is Val, Asn, Asp, or Cys, n = 1-5 for Val and Asn; n = 1 for Asp and Cys) model peptides with α-helix and ß-sheet backbone conformations were computed by density functional methods. The robustness results verify empirical rules drawn from experiments and from computed rotational strengths linking amide-I and amide-II patterns in the vibrational circular dichroism (VCD) spectra of peptides with their backbone structures. For peptides with at least three residues (n ≥ 3) these characteristic patterns from coupled amide vibrational modes have robust signatures. For shorter peptide models many vibrational modes are nonrobust, and the robust modes can be dependent on the residues or on their side chain conformations in addition to backbone conformations. These robust VCD bands, however, provide information for the detailed structural analysis of these smaller systems.


Asunto(s)
Amidas/química , Dicroismo Circular , Péptidos/química , Vibración , Modelos Moleculares , Estructura Secundaria de Proteína , Rotación , Estereoisomerismo
18.
Small ; 10(7): 1369-78, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24167020

RESUMEN

By exposing flat and curved carbon surfaces to coronene, a variety of van der Waals hybrid heterostructures are prepared, including coronene encapsulated in carbon nanotubes, and coronene and dicoronylene adsorbed on nanotubes or graphite via π-π interactions. The structure of the final product is determined by the temperature of the experiment and the curvature of the carbon surface. While at temperatures below and close to the sublimation point of coronene, nanotubes with suitable diameters are filled with single coronene molecules, at higher temperatures additional dimerization and oligomerization of coronene occurs on the surface of carbon nanotubes. The fact that dicoronylene and possible higher oligomers are formed at lower temperatures than expected for vapor-phase polymerization indicates the active role of the carbon surface used primarily as template. Removal of adsorbed species from the nanotube surface is of utmost importance for reliable characterization of encapsulated molecules: it is demonstrated that the green fluorescence attributed previously to encapsulated coronene is instead caused by dicoronylene adsorbed on the surface which can be solubilized and removed using surfactants. After removing most of the adsorbed layer, a combination of Raman spectroscopy and transmission electron microscopy was employed to follow the transformation dynamics of coronene molecules inside nanotubes.

19.
Chemistry ; 19(50): 17201-8, 2013 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-24307372

RESUMEN

The photolysis of four chloro-substituted thiadiazoles (3,4-dichloro-, 3-chloro- and 3-chloro-4-fluoro-1,2,5-thiadiazole; 3,5-dichloro-1,2,4-thiadiazole) and 3,4-dicyano-1,2,5-thiadiazole was investigated in inert solid-argon matrices at cryogenic temperatures by means of UV irradiation at selected wavelengths of 254 and 280 nm. The photolysis products were identified by mid-IR and UV spectroscopy. Evidence for the existence of three novel pseudohalides, namely, chloronitrile sulfide (ClCNS), chlorine isothiocyanate (ClNCS) and cyanogen N-sulfide (NCCNS), was provided by direct spectroscopic methods supported by quantum chemical calculations. Ground-state geometries, vibrational frequencies, IR intensities, and UV excitation energies of ClCNS, ClNCS and NCCNS were obtained from calculations using the B3LYP, CCSD(T) and SAC-CI methods and the aug-cc-pV(T+d)Z basis set.

20.
Amino Acids ; 45(4): 957-73, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23860847

RESUMEN

To determine local chirality driven conformational preferences of small aminocyclobutane-1-carboxylic acid derivatives, X-(ACBA) n -Y, their matrix-isolation IR spectra were recorded and analyzed. For the very first time model systems of this kind were deposited in a frozen (~10 K) noble gas matrix to reduce line width and thus, the recorded sharp vibrational lines were analyzed in details. For cis-(S,R)-1 monomer two "zigzag" conformers composed of either a six or an eight-membered H-bonded pseudo ring was identified. For trans-(S,S)-2 stereoisomer a zigzag of an eight-membered pseudo ring and a helical building unit were determined. Both findings are fully consistent with our computational results, even though the relative conformational ratios were found to vary with respect to measurements. For the dimers (S,R,S,S)-3 and (S,S,S,R)-4 as many as four different cis,trans and three different trans,cis conformers were localized in their matrix-isolation IR (MI-IR) spectra. These foldamers not only agree with the previous computational and NMR results, but also unambiguously show for the first time the presence of a structure made of a cis,trans conformer which links a "zigzag" and a helical foldamer via a bifurcated H-bond. The present work underlines the importance of MI-IR spectroscopy, applied for the first time for triamides to analyze the conformational pool of small biomolecules. We have shown that the local chirality of a ß-amino acid can fully control its backbone folding preferences. Unlike proteogenic α-peptides, ß- and especially (ACBA) n type oligopeptides could thus be used to rationally design and influence foldamer's structural preferences.


Asunto(s)
Amidas/química , Nanoestructuras/química , Péptidos/química , Péptidos/síntesis química , Modelos Moleculares , Estructura Molecular , Pliegue de Proteína , Teoría Cuántica , Espectrofotometría Infrarroja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA