Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 29(8): 1421-1435, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32176403

RESUMEN

Dispersal sets the fundamental scales of ecological and evolutionary dynamics and has important implications for population persistence. Patterns of marine dispersal remain poorly understood, partly because dispersal may vary through time and often homogenizes allele frequencies. However, combining multiple types of natural tags can provide more precise dispersal estimates, and biological collections can help to reconstruct dispersal patterns through time. We used single nucleotide polymorphism genotypes and otolith core microchemistry from archived collections of larval summer flounder (Paralichthys dentatus, n = 411) captured between 1989 and 2012 at five locations along the US East coast to reconstruct dispersal patterns through time. Neither genotypes nor otolith microchemistry alone were sufficient to identify the source of larval fish. However, microchemistry identified clusters of larvae (n = 3-33 larvae per cluster) that originated in the same location, and genetic assignment of clusters could be made with substantially more confidence. We found that most larvae probably originated near a biogeographical break (Cape Hatteras) and that larvae were transported in both directions across this break. Larval sources did not shift north through time, despite the northward shift of adult populations in recent decades. Our novel approach demonstrates that summer flounder dispersal is widespread throughout their range, on both intra- and intergenerational timescales, and may be a particularly important process for synchronizing population dynamics and maintaining genetic diversity during an era of rapid environmental change. Broadly, our results reveal the value of archived collections and of combining multiple natural tags to understand the magnitude and directionality of dispersal in species with extensive gene flow.


Asunto(s)
Lenguado , Animales , Peces , Lenguado/genética , Flujo Génico , Larva/genética , Dinámica Poblacional
2.
Mar Environ Res ; 170: 105413, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34284178

RESUMEN

Gut microbiota are important for the health, fitness and development of animal hosts, but little is known about these assemblages in wild populations of fish. Such knowledge is particularly important for juvenile life stages where nutritional intake critically determines early development, growth, and ultimately recruitment. We characterise the microbiome inhabiting the gut of young-of-the-year European plaice ('YOY plaice') on sandy beaches, their key juvenile habitat, and examine how these microbial communities vary spatially in relation to diet and nutritional condition of their plaice hosts. Body size, diet (stomach fullness and eukaryotic 18S ribosomal sequencing), nutritional condition (RNA:DNA) and gut microbiota (16S prokaryotic ribosomal sequencing) were compared in fish at two spatial scales: between beaches separated by 10s of kilometres and between sites at different depths on the same beach, separated by 10s of metres. The main microbial phyla in YOY plaice guts were Proteobacteria, Spirochaetes, Tenericutes and Verrucomicrobiae. Within the Proteobacteria there was an unusual dominance of Alphaproteobacteria. Differences in body size, diet and nutritional condition of YOY plaice between beaches were accompanied by differences in gut microbial assemblage structure. Notably, substantially reduced nutritional condition and size at one of the beaches was associated with lower stomach fullness, reduced consumption of annelids and differences in the abundance and presence of specific microbial taxa. Differences were also detected in microbial assemblages, body size, and diet between depths within the same nursery beach, although stomach fullness and nutritional condition did not vary significantly. The functional links between the environment, gut microbiota, and their hosts are potentially important mediators of the development of young fish through critical life stages. Our study indicates that these links need to be addressed at 10 km and even 10 m scales to capture the variability observed in wild populations of juvenile fish.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias/genética , Dieta/veterinaria , Peces , ARN Ribosómico 16S
3.
Oecologia ; 103(2): 170-179, 1995 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28306770

RESUMEN

Phenolics in marine brown algae have been thought to follow a latitudinal gradient with high phenolic species in high latitudes and low phenolic species in low latitudes. However, tropical brown algae from the western Caribbean have been shown to be high in phlorotannin concentration, indicating that latitude alone is not a reasonable predictor of marine plant phenolic concentrations. This study shows that the range of high phenolic phaeophytes is not limited to the western Caribbean but encompasses the western tropical Atlantic, including Bermuda and the Caribbean, where algal phlorotannin concentrations can be as high as 25% dry weight (DW). Assimilation efficiencies (AEs) of phenolic-rich and phenolic-poor plants were examined in three tropical marine herbivores (the parrotfish, Sparisoma radians, and the brachyuran crab, Mithrax sculptus, from Belize and the parrotfish, Sparisoma chrysopterum, from Bermuda). AEs of phenolic-rich food by each of the three herbivore species were uniformly high, suggesting that high plant phenolic concentrations did not affect AEs in these species. This is in contrast to some temperate marine herbivores where phenolic concentrations of 10% DW have been shown to drastically reduce AE. The apparent contradiction is discussed in light of the effects of specific herbivore gut characteristics on successful herbivory of high phenolic brown algae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA