Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Environ ; 46(2): 379-390, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36479711

RESUMEN

Yield losses due to nutrient deficiency are estimated as the primary cause of the yield gap worldwide. Understanding how plant roots perceive external nutrient status and elaborate morphological adaptations in response to it is necessary to develop reliable strategies to increase crop yield. In the last decade, reactive oxygen species (ROS) were shown to be key players of the mechanisms underlying root responses to nutrient limitation. ROS contribute in multiple ways to shape the root system in response to nutritional cues, both as direct effectors acting on cell wall architecture and as second messengers in signalling pathways. Here, we review the mutual interconnections existing between perception and signalling of the most common forms of the major macronutrients (nitrogen, phosphorus and potassium), and ROS in shaping plant root system architecture. We discuss recent advances in dissecting the integration of these elements and their impact on morphological traits of the root system, highlighting the functional ductility of ROS and enzymes implied in ROS metabolism, such as class III peroxidases.


Asunto(s)
Fósforo , Raíces de Plantas , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fósforo/metabolismo , Fenotipo , Nutrientes , Nitrógeno/metabolismo
2.
Plant Cell Environ ; 43(5): 1103-1116, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31997381

RESUMEN

The entanglement between primary metabolism regulation and stress responses is a puzzling and fascinating theme in plant sciences. Among the major metabolites found in plants, γ-aminobutyric acid (GABA) fulfils important roles in connecting C and N metabolic fluxes through the GABA shunt. Activation of GABA metabolism is known since long to occur in plant tissues following biotic stresses, where GABA appears to have substantially different modes of action towards different categories of pathogens and pests. While it can harm insects thanks to its inhibitory effect on the neuronal transmission, its capacity to modulate the hypersensitive response in attacked host cells was proven to be crucial for host defences in several pathosystems. In this review, we discuss how plants can employ GABA's versatility to effectively deal with all the major biotic stressors, and how GABA can shape plant immune responses against pathogens by modulating reactive oxygen species balance in invaded plant tissues. Finally, we discuss the connections between GABA and other stress-related amino acids such as BABA (ß-aminobutyric acid), glutamate and proline.


Asunto(s)
Aminoácidos/fisiología , Inmunidad de la Planta , Ácido gamma-Aminobutírico/fisiología , Aminoácidos/metabolismo , Enfermedades de las Plantas/inmunología , Ácido gamma-Aminobutírico/metabolismo
3.
Plant Methods ; 20(1): 16, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287427

RESUMEN

BACKGROUND: One of the levers towards alternative solutions to pesticides is to improve seed defenses against pathogens, but a better understanding is needed on the type and regulation of existing pathways during germination. Dormant seeds are able to defend themselves against microorganisms during cycles of rehydration and dehydration in the soil. During imbibition, seeds leak copious amounts of exudates. Here, we developed a nephelometry method to assay antimicrobial activity (AA) in tomato seed exudates as a proxy to assess level of defenses. RESULTS: A protocol is described to determine the level of AA against the nonhost filamentous fungus Alternaria brassicicola in the exudates of tomato seeds and seedlings. The fungal and exudate concentrations can be adjusted to modulate the assay sensitivity, thereby providing a large window of AA detection. We established that AA in dormant seeds depends on the genotype. It ranged from very strong AA to complete absence of AA, even after prolonged imbibition. AA depends also on the stages of germination and seedling emergence. Exudates from germinated seeds and seedlings showed very strong AA, while those from dormant seeds exhibited less activity for the same imbibition time. The exudate AA did not impact the growth of a pathogenic fungus host of tomato, Alternaria alternata, illustrating the adaptation of this fungus to its host. CONCLUSIONS: We demonstrate that our nephelometry method is a simple yet powerful bioassay to quantify AA in seed exudates. Different developmental stages from dormant seed to seedlings show different levels of AA in the exudate that vary between genotypes, highlighting a genetic diversity x developmental stage interaction in defense. These findings will be important to identify molecules in the exudates conferring antifungal properties and obtain a better understanding of the regulatory and biosynthetic pathways through the lifecycle of seeds, from dormant seeds until seedling emergence.

4.
Plant Physiol Biochem ; 206: 108213, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043253

RESUMEN

Nitrogen is the most limiting nutrient for plants, and it is preferentially absorbed in the form of nitrate by roots, which adapt to nitrate fluctuations by remodelling their architecture. Although core mechanisms of the response to nitrate availability are relatively well-known, signalling events controlling root growth and architecture have not all been identified, in particular in Legumes. However, the developmental effect of nitrate in Legumes is critical since external nitrate not only regulates root architecture but also N2-fixing nodule development. We have previously shown that in barrel medic (Medicago truncatula), the nitrate transporter MtNPF6.8 is required for nitrate sensitivity in root tip. However, uncertainty remains as to whether nitrogen metabolism itself is involved in the MtNPF6.8-mediated response. Here, we examine the metabolic effects of MtNPF6.8-dependent nitrate signalling using metabolomics and proteomics in WT and mtnpf6.8 root tips in presence or absence of nitrate. We found a reorchestration of metabolism due to the mutation, in favour of the branched chain amino acids/pantothenate metabolic pathway, and lipid catabolism via glyoxylate. That is, the mtnpf6.8 mutation was likely associated with a specific rerouting of acetyl-CoA production (glyoxylic cycle) and utilisation (pantothenate and branched chain amino acid synthesis). In agreement with our previous findings, class III peroxidases were confirmed as the main protein class responsive to nitrate, although in an MtNPF6.8-independent fashion. Our data rather suggest the involvement of other pathways within mtnpf6.8 root tips, such as Ca2+ signalling or cell wall methylation.


Asunto(s)
Medicago truncatula , Transportadores de Nitrato , Meristema/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Nitratos/metabolismo , Raíces de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Aminoácidos de Cadena Ramificada/farmacología , Redes y Vías Metabólicas , Nitrógeno/metabolismo , Simbiosis
5.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 3): 152-157, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32134001

RESUMEN

The metabolism of sucrose is of crucial importance for life on Earth. In plants, enzymes called invertases split sucrose into glucose and fructose, contributing to the regulation of metabolic fluxes. Invertases differ in their localization and pH optimum. Acidic invertases present in plant cell walls and vacuoles belong to glycoside hydrolase family 32 (GH32) and have an all-ß structure. In contrast, neutral invertases are located in the cytosol and organelles such as chloroplasts and mitochondria. These poorly understood enzymes are classified into a separate GH100 family. Recent crystal structures of the closely related neutral invertases InvA and InvB from the cyanobacterium Anabaena revealed a predominantly α-helical fold with unique features compared with other sucrose-metabolizing enzymes. Here, a neutral invertase (AtNIN2) from the model plant Arabidopsis thaliana was heterologously expressed, purified and crystallized. As a result, the first neutral invertase structure from a higher plant has been obtained at 3.4 Šresolution. The hexameric AtNIN2 structure is highly similar to that of InvA, pointing to high evolutionary conservation of neutral invertases.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/química , Arabidopsis/genética , Cristalografía por Rayos X/métodos , Secuencia de Aminoácidos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
6.
Front Plant Sci ; 7: 2061, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28123393

RESUMEN

This perspective paper proposes that endogenous apoplastic fructans in fructan accumulating plants, released after stress-mediated cellular leakage, or increased by exogenous application, can act as damage-associated molecular patterns (DAMPs), priming plant innate immunity through ancient receptors and defense pathways that most probably evolved to react on microbial fructans acting as microbe-associated molecular patterns (MAMPs). The proposed model is placed in an evolutionary perspective. How this type of DAMP signaling may contribute to cross-tolerance and multistress resistance effects in plants is discussed. Besides apoplastic ATP, NAD and fructans, apoplastic polyamines, secondary metabolites, and melatonin may be considered potential players in DAMP-mediated stress signaling. It is proposed that mixtures of DAMP priming formulations hold great promise as natural and sustainable alternatives for toxic agrochemicals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA