Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mach Learn Med Imaging ; 14349: 144-154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463442

RESUMEN

Alzheimer's disease (AD) leads to irreversible cognitive decline, with Mild Cognitive Impairment (MCI) as its prodromal stage. Early detection of AD and related dementia is crucial for timely treatment and slowing disease progression. However, classifying cognitive normal (CN), MCI, and AD subjects using machine learning models faces class imbalance, necessitating the use of balanced accuracy as a suitable metric. To enhance model performance and balanced accuracy, we introduce a novel method called VS-Opt-Net. This approach incorporates the recently developed vector-scaling (VS) loss into a machine learning pipeline named STREAMLINE. Moreover, it employs Bayesian optimization for hyperparameter learning of both the model and loss function. VS-Opt-Net not only amplifies the contribution of minority examples in proportion to the imbalance level but also addresses the challenge of generalization in training deep networks. In our empirical study, we use MRI-based brain regional measurements as features to conduct the CN vs MCI and AD vs MCI binary classifications. We compare the balanced accuracy of our model with other machine learning models and deep neural network loss functions that also employ class-balanced strategies. Our findings demonstrate that after hyperparameter optimization, the deep neural network using the VS loss function substantially improves balanced accuracy. It also surpasses other models in performance on the AD dataset. Moreover, our feature importance analysis highlights VS-Opt-Net's ability to elucidate biomarker differences across dementia stages.

2.
AMIA Jt Summits Transl Sci Proc ; 2024: 211-220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827072

RESUMEN

Fairness is crucial in machine learning to prevent bias based on sensitive attributes in classifier predictions. However, the pursuit of strict fairness often sacrifices accuracy, particularly when significant prevalence disparities exist among groups, making classifiers less practical. For example, Alzheimer's disease (AD) is more prevalent in women than men, making equal treatment inequitable for females. Accounting for prevalence ratios among groups is essential for fair decision-making. In this paper, we introduce prior knowledge for fairness, which incorporates prevalence ratio information into the fairness constraint within the Empirical Risk Minimization (ERM) framework. We develop the Prior-knowledge-guided Fair ERM (PFERM) framework, aiming to minimize expected risk within a specified function class while adhering to a prior-knowledge-guided fairness constraint. This approach strikes a flexible balance between accuracy and fairness. Empirical results confirm its effectiveness in preserving fairness without compromising accuracy.

3.
Proc Mach Learn Res ; 216: 2123-2133, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38601022

RESUMEN

We present a novel Bayesian-based optimization framework that addresses the challenge of generalization in overparameterized models when dealing with imbalanced subgroups and limited samples per subgroup. Our proposed tri-level optimization framework utilizes local predictors, which are trained on a small amount of data, as well as a fair and class-balanced predictor at the middle and lower levels. To effectively overcome saddle points for minority classes, our lower-level formulation incorporates sharpness-aware minimization. Meanwhile, at the upper level, the framework dynamically adjusts the loss function based on validation loss, ensuring a close alignment between the global predictor and local predictors. Theoretical analysis demonstrates the framework's ability to enhance classification and fairness generalization, potentially resulting in improvements in the generalization bound. Empirical results validate the superior performance of our tri-level framework compared to existing state-of-the-art approaches. The source code can be found at https://github.com/PennShenLab/FACIMS.

4.
Adv Neural Inf Process Syst ; 36: 3675-3705, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38665178

RESUMEN

This paper investigates fairness and bias in Canonical Correlation Analysis (CCA), a widely used statistical technique for examining the relationship between two sets of variables. We present a framework that alleviates unfairness by minimizing the correlation disparity error associated with protected attributes. Our approach enables CCA to learn global projection matrices from all data points while ensuring that these matrices yield comparable correlation levels to group-specific projection matrices. Experimental evaluation on both synthetic and real-world datasets demonstrates the efficacy of our method in reducing correlation disparity error without compromising CCA accuracy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA