Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
2.
Nucleic Acids Res ; 40(22): 11583-93, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23042678

RESUMEN

Transfer RNAs (tRNAs) reach their mature functional form through several steps of processing and modification. Some nucleotide modifications affect the proper folding of tRNAs, and they are crucial in case of the non-canonically structured animal mitochondrial tRNAs, as exemplified by the apparently ubiquitous methylation of purines at position 9. Here, we show that a subcomplex of human mitochondrial RNase P, the endonuclease removing tRNA 5' extensions, is the methyltransferase responsible for m(1)G9 and m(1)A9 formation. The ability of the mitochondrial tRNA:m(1)R9 methyltransferase to modify both purines is uncommon among nucleic acid modification enzymes. In contrast to all the related methyltransferases, the human mitochondrial enzyme, moreover, requires a short-chain dehydrogenase as a partner protein. Human mitochondrial RNase P, thus, constitutes a multifunctional complex, whose subunits moonlight in cascade: a fatty and amino acid degradation enzyme in tRNA methylation and the methyltransferase, in turn, in tRNA 5' end processing.


Asunto(s)
Metiltransferasas/metabolismo , Mitocondrias/enzimología , ARN de Transferencia/metabolismo , ARN/metabolismo , Ribonucleasa P/metabolismo , ARNt Metiltransferasas/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Células HeLa , Humanos , Metilación , Complejos Multienzimáticos/metabolismo , Oxidorreductasas/metabolismo , Subunidades de Proteína/metabolismo , ARN/química , División del ARN , ARN Mitocondrial , ARN de Transferencia/química
3.
Circ Res ; 108(7): 862-70, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21454794

RESUMEN

RATIONALE: Despite maternal transmission of hypertension in some pedigrees, pathophysiology of maternally inherited hypertension remains poorly understood. OBJECTIVE: To establish a causative link between mitochondrial dysfunction and essential hypertension. METHOD AND RESULTS: A total of 106 subjects from a large Chinese family underwent clinical, genetic, molecular, and biochemical evaluations. Fifteen of 24 adult matrilineal relatives exhibited a wide range of severity in essential hypertension, whereas none of the offspring of affected fathers had hypertension. The age at onset of hypertension in the maternal kindred varied from 20 years to 69 years, with an average of 44 years. Mutational analysis of their mitochondrial genomes identified a novel homoplasmic 4263A>G mutation located at the processing site for the tRNA(Ile) 5'-end precursor. An in vitro processing analysis showed that the 4263A>G mutation reduced the efficiency of the tRNA(Ile) precursor 5'-end cleavage catalyzed by RNase P. tRNA Northern analysis revealed that the 4263A>G mutation caused ≈46% reduction in the steady-state level of tRNA(Ile). An in vivo protein-labeling analysis showed ≈32% reduction in the rate of mitochondrial translation in cells carrying the 4263A>G mutation. Impaired mitochondrial translation is apparently a primary contributor to the reductions in the rate of overall respiratory capacity, malate/glutamate-promoted respiration, succinate/glycerol-3-phosphate-promoted respiration, or N,N,N',N'-tetramethyl-p-phenylenediamine/ascorbate-promoted respiration and the increasing level of reactive oxygen species in cells carrying the 4263A>G mutation. CONCLUSIONS: These data provide direct evidence that mitochondrial dysfunction caused by mitochondrial tRNA(Ile) 4263A>G mutation is involved in essential hypertension. Our findings may provide new insights into pathophysiology of maternally transmitted hypertension.


Asunto(s)
Hipertensión/etnología , Hipertensión/genética , Mitocondrias/genética , Mutación Puntual/genética , ARN de Transferencia de Isoleucina/genética , Adulto , Anciano , Presión Sanguínea/genética , China , ADN Mitocondrial/genética , Femenino , Humanos , Hipertensión/fisiopatología , Masculino , Persona de Mediana Edad , Linaje , Especies Reactivas de Oxígeno/metabolismo
4.
Cell Rep ; 2(1): 19-25, 2012 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-22840392

RESUMEN

RNase P is the endonuclease that removes 5' extensions from tRNA precursors. In its best-known form, the enzyme is composed of a catalytic RNA and a protein moiety variable in number and mass. This ribonucleoprotein enzyme is widely considered ubiquitous and apparently reached its highest complexity in the eukaryal nucleus, where it is typically composed of at least ten subunits. Here, we show that in the protist Trypanosoma brucei, two proteins are the sole forms of RNase P. They localize to the nucleus and the mitochondrion, respectively, and have RNase P activity each on their own. The protein-RNase P is, moreover, capable of replacing nuclear RNase P in yeast cells. This shows that complex ribonucleoprotein structures and RNA catalysis are not necessarily required to support tRNA 5' end formation in eukaryal cells.


Asunto(s)
Núcleo Celular/enzimología , Ribonucleasa P/fisiología , Trypanosoma brucei brucei/enzimología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Genes Protozoarios/fisiología , Genoma de Protozoos , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Modelos Biológicos , Complejos Multiproteicos/fisiología , Organismos Modificados Genéticamente , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/fisiología , Ribonucleasa P/genética , Ribonucleasa P/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Levaduras/enzimología , Levaduras/genética , Levaduras/metabolismo
5.
Nat Struct Mol Biol ; 17(6): 740-4, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20473316

RESUMEN

The ubiquitous endonuclease RNase P is responsible for the 5' maturation of tRNA precursors. Until the discovery of human mitochondrial RNase P, these enzymes had typically been found to be ribonucleoproteins, the catalytic activity of which is associated with the RNA component. Here we show that, in Arabidopsis thaliana mitochondria and plastids, a single protein called 'proteinaceous RNase P' (PRORP1) can perform the endonucleolytic maturation of tRNA precursors that defines RNase P activity. In addition, PRORP1 is able to cleave tRNA-like structures involved in the maturation of plant mitochondrial mRNAs. Finally, we show that Arabidopsis PRORP1 can replace the bacterial ribonucleoprotein RNase P in Escherichia coli cells. PRORP2 and PRORP3, two paralogs of PRORP1, are both localized in the nucleus.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ribonucleasa P/metabolismo , Secuencia de Aminoácidos , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ácido Aspártico/química , Secuencia de Bases , Dominio Catalítico/genética , Secuencia Conservada , Escherichia coli/enzimología , Escherichia coli/genética , Evolución Molecular , Genes de Plantas , Humanos , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Filogenia , Plastidios/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Planta/química , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleasa P/química , Ribonucleasa P/genética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
6.
Mol Cell Biol ; 29(6): 1487-97, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19124606

RESUMEN

Double-stranded RNA (dsRNA)-binding proteins interact with substrate RNAs via dsRNA-binding domains (dsRBDs). Several proteins harboring these domains exhibit nucleocytoplasmic shuttling and possibly remain associated with their substrate RNAs bound in the nucleus during nuclear export. In the human RNA-editing enzyme ADAR1-c, the nuclear localization signal overlaps the third dsRBD, while the corresponding import factor is unknown. The protein also lacks a clear nuclear export signal but shuttles between the nucleus and the cytoplasm. Here we identify transportin-1 as the import receptor for ADAR1. Interestingly, dsRNA binding interferes with transportin-1 binding. At the same time, each of the dsRBDs in ADAR1 interacts with the export factor exportin-5. RNA binding stimulates this interaction but is not a prerequisite. Thus, our data demonstrate a role for some dsRBDs as RNA-sensitive nucleocytoplasmic transport signals. dsRBD3 in ADAR1 can mediate nuclear import, while interaction of all dsRBDs might control nuclear export. This finding may have implications for other proteins containing dsRBDs and suggests a selective nuclear export mechanism for substrates interacting with these proteins.


Asunto(s)
Adenosina Desaminasa/metabolismo , Núcleo Celular/metabolismo , Carioferinas/metabolismo , ARN Bicatenario/fisiología , Proteínas de Unión al ARN/fisiología , beta Carioferinas/metabolismo , Proteína de Unión al GTP ran/fisiología , Transporte Activo de Núcleo Celular/fisiología , Secuencia de Aminoácidos , Animales , Línea Celular , Citoplasma/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Señales de Localización Nuclear/metabolismo
7.
RNA ; 12(11): 1993-2004, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17000903

RESUMEN

Specific RNA recognition of proteins containing the double-strand RNA-binding domain (dsRBD) is essential for several biological pathways such as ADAR-mediated adenosine deamination, localization of RNAs by Staufen, or RNA cleavage by RNAse III. Structural analysis has demonstrated the lack of base-specific interactions of dsRBDs with either a perfect RNA duplex or an RNA hairpin. We therefore asked whether in vitro selections performed in parallel with individual dsRBDs could yield RNAs that are specifically recognized by the dsRBD on which they were selected . To this end, SELEX experiments were performed using either the second dsRBD of the RNA-editing enzyme ADAR1 or the second dsRBD of Xlrbpa, a homolog of TRBP that is involved in RISC formation. Several RNA families with high binding capacities for dsRBDs were isolated from either SELEX experiment, but no discrimination of these RNAs by different dsRBDs could be detected. The selected RNAs are highly structured, and binding regions map to two neighboring stem-loops that presumably form stacked helices and are interrupted by mismatches and bulges. Despite the lack of selective binding of SELEX RNAs to individual dsRBDS, selected RNAs can efficiently interfere with RNA editing in vivo.


Asunto(s)
Adenosina Desaminasa/metabolismo , Aptámeros de Nucleótidos/metabolismo , Edición de ARN/genética , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Xenopus/metabolismo , Adenosina Desaminasa/genética , Animales , Aptámeros de Nucleótidos/genética , Emparejamiento Base , Secuencia de Bases , Datos de Secuencia Molecular , ARN Bicatenario/genética , Proteínas de Unión al ARN/genética , Técnica SELEX de Producción de Aptámeros , Análisis de Secuencia de ADN , Proteínas de Xenopus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA