Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(14): 3602-3618.e20, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38823389

RESUMEN

Purine nucleotides are vital for RNA and DNA synthesis, signaling, metabolism, and energy homeostasis. To synthesize purines, cells use two principal routes: the de novo and salvage pathways. Traditionally, it is believed that proliferating cells predominantly rely on de novo synthesis, whereas differentiated tissues favor the salvage pathway. Unexpectedly, we find that adenine and inosine are the most effective circulating precursors for supplying purine nucleotides to tissues and tumors, while hypoxanthine is rapidly catabolized and poorly salvaged in vivo. Quantitative metabolic analysis demonstrates comparative contribution from de novo synthesis and salvage pathways in maintaining purine nucleotide pools in tumors. Notably, feeding mice nucleotides accelerates tumor growth, while inhibiting purine salvage slows down tumor progression, revealing a crucial role of the salvage pathway in tumor metabolism. These findings provide fundamental insights into how normal tissues and tumors maintain purine nucleotides and highlight the significance of purine salvage in cancer.


Asunto(s)
Neoplasias , Nucleótidos de Purina , Purinas , Animales , Ratones , Purinas/metabolismo , Purinas/biosíntesis , Neoplasias/metabolismo , Neoplasias/patología , Nucleótidos de Purina/metabolismo , Humanos , Inosina/metabolismo , Hipoxantina/metabolismo , Ratones Endogámicos C57BL , Adenina/metabolismo , Línea Celular Tumoral , Femenino
2.
Nature ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169180

RESUMEN

For over a century, fasting regimens have improved health, lifespan and tissue regeneration in diverse organisms, including humans1-6. However, how fasting and post-fast refeeding affect adult stem cells and tumour formation has yet to be explored in depth. Here we demonstrate that post-fast refeeding increases intestinal stem cell (ISC) proliferation and tumour formation; post-fast refeeding augments the regenerative capacity of Lgr5+ ISCs, and loss of the tumour suppressor gene Apc in post-fast-refed ISCs leads to a higher tumour incidence in the small intestine and colon than in the fasted or ad libitum-fed states, demonstrating that post-fast refeeding is a distinct state. Mechanistically, we discovered that robust mTORC1 induction in post-fast-refed ISCs increases protein synthesis via polyamine metabolism to drive these changes, as inhibition of mTORC1, polyamine metabolite production or protein synthesis abrogates the regenerative or tumorigenic effects of post-fast refeeding. Given our findings, fast-refeeding cycles must be carefully considered and tested when planning diet-based strategies for regeneration without increasing cancer risk, as post-fast refeeding leads to a burst in stem-cell-driven regeneration and tumorigenicity.

3.
Nature ; 604(7905): 349-353, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35388219

RESUMEN

Mammalian embryogenesis requires rapid growth and proper metabolic regulation1. Midgestation features increasing oxygen and nutrient availability concomitant with fetal organ development2,3. Understanding how metabolism supports development requires approaches to observe metabolism directly in model organisms in utero. Here we used isotope tracing and metabolomics to identify evolving metabolic programmes in the placenta and embryo during midgestation in mice. These tissues differ metabolically throughout midgestation, but we pinpointed gestational days (GD) 10.5-11.5 as a transition period for both placenta and embryo. Isotope tracing revealed differences in carbohydrate metabolism between the tissues and rapid glucose-dependent purine synthesis, especially in the embryo. Glucose's contribution to the tricarboxylic acid (TCA) cycle rises throughout midgestation in the embryo but not in the placenta. By GD12.5, compartmentalized metabolic programmes are apparent within the embryo, including different nutrient contributions to the TCA cycle in different organs. To contextualize developmental anomalies associated with Mendelian metabolic defects, we analysed mice deficient in LIPT1, the enzyme that activates 2-ketoacid dehydrogenases related to the TCA cycle4,5. LIPT1 deficiency suppresses TCA cycle metabolism during the GD10.5-GD11.5 transition, perturbs brain, heart and erythrocyte development and leads to embryonic demise by GD11.5. These data document individualized metabolic programmes in developing organs in utero.


Asunto(s)
Ciclo del Ácido Cítrico , Desarrollo Fetal , Metabolómica , Placenta , Animales , Embrión de Mamíferos/metabolismo , Femenino , Glucosa/metabolismo , Mamíferos/metabolismo , Ratones , Placenta/metabolismo , Embarazo
4.
Nature ; 591(7850): 438-444, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33627868

RESUMEN

Stromal cells in adult bone marrow that express leptin receptor (LEPR) are a critical source of growth factors, including stem cell factor (SCF), for the maintenance of haematopoietic stem cells and early restricted progenitors1-6. LEPR+ cells are heterogeneous, including skeletal stem cells and osteogenic and adipogenic progenitors7-12, although few markers have been available to distinguish these subsets or to compare their functions. Here we show that expression of an osteogenic growth factor, osteolectin13,14, distinguishes peri-arteriolar LEPR+ cells poised to undergo osteogenesis from peri-sinusoidal LEPR+ cells poised to undergo adipogenesis (but retaining osteogenic potential). Peri-arteriolar LEPR+osteolectin+ cells are rapidly dividing, short-lived osteogenic progenitors that increase in number after fracture and are depleted during ageing. Deletion of Scf from adult osteolectin+ cells did not affect the maintenance of haematopoietic stem cells or most restricted progenitors but depleted common lymphoid progenitors, impairing lymphopoiesis, bacterial clearance, and survival after acute bacterial infection. Peri-arteriolar osteolectin+ cell maintenance required mechanical stimulation. Voluntary running increased, whereas hindlimb unloading decreased, the frequencies of peri-arteriolar osteolectin+ cells and common lymphoid progenitors. Deletion of the mechanosensitive ion channel PIEZO1 from osteolectin+ cells depleted osteolectin+ cells and common lymphoid progenitors. These results show that a peri-arteriolar niche for osteogenesis and lymphopoiesis in bone marrow is maintained by mechanical stimulation and depleted during ageing.


Asunto(s)
Arteriolas , Linfopoyesis , Osteogénesis , Nicho de Células Madre , Tejido Adiposo/citología , Envejecimiento , Animales , Células de la Médula Ósea/citología , Huesos/citología , Femenino , Factores de Crecimiento de Célula Hematopoyética/metabolismo , Lectinas Tipo C/metabolismo , Linfocitos/citología , Masculino , Ratones , Receptores de Leptina/metabolismo , Factor de Células Madre , Células del Estroma/citología
5.
Nature ; 585(7823): 113-118, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32814895

RESUMEN

Cancer cells, including melanoma cells, often metastasize regionally through the lymphatic system before metastasizing systemically through the blood1-4; however, the reason for this is unclear. Here we show that melanoma cells in lymph experience less oxidative stress and form more metastases than melanoma cells in blood. Immunocompromised mice with melanomas derived from patients, and immunocompetent mice with mouse melanomas, had more melanoma cells per microlitre in tumour-draining lymph than in tumour-draining blood. Cells that metastasized through blood, but not those that metastasized through lymph, became dependent on the ferroptosis inhibitor GPX4. Cells that were pretreated with chemical ferroptosis inhibitors formed more metastases than untreated cells after intravenous, but not intralymphatic, injection. We observed multiple differences between lymph fluid and blood plasma that may contribute to decreased oxidative stress and ferroptosis in lymph, including higher levels of glutathione and oleic acid and less free iron in lymph. Oleic acid protected melanoma cells from ferroptosis in an Acsl3-dependent manner and increased their capacity to form metastatic tumours. Melanoma cells from lymph nodes were more resistant to ferroptosis and formed more metastases after intravenous injection than did melanoma cells from subcutaneous tumours. Exposure to the lymphatic environment thus protects melanoma cells from ferroptosis and increases their ability to survive during subsequent metastasis through the blood.


Asunto(s)
Ferroptosis , Linfa/metabolismo , Melanoma/patología , Metástasis de la Neoplasia/patología , Animales , Supervivencia Celular , Coenzima A Ligasas/metabolismo , Femenino , Ferroptosis/efectos de los fármacos , Glutatión/metabolismo , Humanos , Hierro/metabolismo , Masculino , Melanoma/sangre , Melanoma/metabolismo , Ratones , Metástasis de la Neoplasia/tratamiento farmacológico , Ácido Oléico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Análisis de Componente Principal
6.
Nature ; 577(7788): 115-120, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31853067

RESUMEN

Metastasis requires cancer cells to undergo metabolic changes that are poorly understood1-3. Here we show that metabolic differences among melanoma cells confer differences in metastatic potential as a result of differences in the function of the MCT1 transporter. In vivo isotope tracing analysis in patient-derived xenografts revealed differences in nutrient handling between efficiently and inefficiently metastasizing melanomas, with circulating lactate being a more prominent source of tumour lactate in efficient metastasizers. Efficient metastasizers had higher levels of MCT1, and inhibition of MCT1 reduced lactate uptake. MCT1 inhibition had little effect on the growth of primary subcutaneous tumours, but resulted in depletion of circulating melanoma cells and reduced the metastatic disease burden in patient-derived xenografts and in mouse melanomas. In addition, inhibition of MCT1 suppressed the oxidative pentose phosphate pathway and increased levels of reactive oxygen species. Antioxidants blocked the effects of MCT1 inhibition on metastasis. MCT1high and MCT1-/low cells from the same melanomas had similar capacities to form subcutaneous tumours, but MCT1high cells formed more metastases after intravenous injection. Metabolic differences among cancer cells thus confer differences in metastatic potential as metastasizing cells depend on MCT1 to manage oxidative stress.


Asunto(s)
Melanoma/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular , Humanos , Melanoma/genética , Melanoma/secundario , Ratones , Transportadores de Ácidos Monocarboxílicos/genética , Estrés Oxidativo , Simportadores/genética , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35110412

RESUMEN

The pentose phosphate pathway is a major source of NADPH for oxidative stress resistance in cancer cells but there is limited insight into its role in metastasis, when some cancer cells experience high levels of oxidative stress. To address this, we mutated the substrate binding site of glucose 6-phosphate dehydrogenase (G6PD), which catalyzes the first step of the pentose phosphate pathway, in patient-derived melanomas. G6PD mutant melanomas had significantly decreased G6PD enzymatic activity and depletion of intermediates in the oxidative pentose phosphate pathway. Reduced G6PD function had little effect on the formation of primary subcutaneous tumors, but when these tumors spontaneously metastasized, the frequency of circulating melanoma cells in the blood and metastatic disease burden were significantly reduced. G6PD mutant melanomas exhibited increased levels of reactive oxygen species, decreased NADPH levels, and depleted glutathione as compared to control melanomas. G6PD mutant melanomas compensated for this increase in oxidative stress by increasing malic enzyme activity and glutamine consumption. This generated a new metabolic vulnerability as G6PD mutant melanomas were more dependent upon glutaminase than control melanomas, both for oxidative stress management and anaplerosis. The oxidative pentose phosphate pathway, malic enzyme, and glutaminolysis thus confer layered protection against oxidative stress during metastasis.


Asunto(s)
Glucosafosfato Deshidrogenasa/metabolismo , Glutamina/metabolismo , Melanoma/metabolismo , Estrés Oxidativo/fisiología , Animales , Humanos , Ratones , Ratones Endogámicos NOD , NADP/metabolismo , Oxidación-Reducción , Vía de Pentosa Fosfato/fisiología , Especies Reactivas de Oxígeno/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34140410

RESUMEN

We previously described a new osteogenic growth factor, osteolectin/Clec11a, which is required for the maintenance of skeletal bone mass during adulthood. Osteolectin binds to Integrin α11 (Itga11), promoting Wnt pathway activation and osteogenic differentiation by leptin receptor+ (LepR+) stromal cells in the bone marrow. Parathyroid hormone (PTH) and sclerostin inhibitor (SOSTi) are bone anabolic agents that are administered to patients with osteoporosis. Here we tested whether osteolectin mediates the effects of PTH or SOSTi on bone formation. We discovered that PTH promoted Osteolectin expression by bone marrow stromal cells within hours of administration and that PTH treatment increased serum osteolectin levels in mice and humans. Osteolectin deficiency in mice attenuated Wnt pathway activation by PTH in bone marrow stromal cells and reduced the osteogenic response to PTH in vitro and in vivo. In contrast, SOSTi did not affect serum osteolectin levels and osteolectin was not required for SOSTi-induced bone formation. Combined administration of osteolectin and PTH, but not osteolectin and SOSTi, additively increased bone volume. PTH thus promotes osteolectin expression and osteolectin mediates part of the effect of PTH on bone formation.


Asunto(s)
Factores de Crecimiento de Célula Hematopoyética/metabolismo , Lectinas Tipo C/metabolismo , Osteogénesis/efectos de los fármacos , Hormona Paratiroidea/farmacología , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Hueso Esponjoso/efectos de los fármacos , Hueso Esponjoso/patología , Femenino , Factores de Crecimiento de Célula Hematopoyética/sangre , Factores de Crecimiento de Célula Hematopoyética/deficiencia , Humanos , Lectinas Tipo C/sangre , Lectinas Tipo C/deficiencia , Ratones Endogámicos C57BL , Tamaño de los Órganos/efectos de los fármacos , Osteoporosis/sangre , Premenopausia/sangre , Vía de Señalización Wnt/efectos de los fármacos
9.
J Eur Acad Dermatol Venereol ; 37(5): 907-913, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36606548

RESUMEN

INTRODUCTION: Worldwide mass vaccination for COVID-19 started in late 2020. COVID-19 vaccines cause benign hypermetabolic lymphadenopathies. Clinical stratification between vaccine-associated benign lymphadenopathies and malignant lymphadenopathies through ultrasound, MRI or FDG PET-CT is not feasible. This leads to unnecessary lymph node biopsies, excisions and even radical lymph node dissections. Therefore, to avoid unnecessary surgeries, we assessed whether noninvasive multispectral optoacoustic tomography (MSOT) enables a better differentiation between benign and malignant lymphadenopathies. PATIENTS AND METHODS: All patients were vaccinated for COVID-19. We used MSOT to image deoxy- and oxyhaemoglobin levels in lymph nodes of tumour patients to assess metastatic status. MSOT imaging results were compared with standard ultrasound and pathological lymph node analysis. We also evaluated the influences of gender, age and time between vaccination and MSOT measurement of lymph nodes on the measured deoxy- and oxyhaemoglobin levels in patients with reactive lymph node changes. RESULTS: Multispectral optoacoustic tomography was able to identify cancer-free lymph nodes in vivo without a single false negative (33 total lymph nodes), with 100% sensitivity and 50% specificity. A statistically significant higher deoxyhaemoglobin content was detected in patients with tumour manifestations in the lymph node (p = 0.02). There was no statistically significant difference concerning oxyhaemoglobin (p = 0.65). Age, sex and time between vaccination and MSOT measurement had statistically non-significant impact on deoxy- and oxyhaemoglobin levels in patients with reactive lymph nodes. CONCLUSION: Here, we show that MSOT measurement is an advantageous clinical approach to differentiate between vaccine-associated benign lymphadenopathy and malignant lymph node metastases based on the deoxygenation level in lymph nodes.


Asunto(s)
COVID-19 , Coronavirus , Linfadenopatía , Humanos , Metástasis Linfática , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Vacunas contra la COVID-19 , Oxihemoglobinas , COVID-19/patología , Linfadenopatía/diagnóstico por imagen , Linfadenopatía/etiología , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Vacunación , Fluorodesoxiglucosa F18
10.
Z Gerontol Geriatr ; 56(6): 505-515, 2023 Oct.
Artículo en Alemán | MEDLINE | ID: mdl-37642727

RESUMEN

Skin changes in the surrounding areas of wounds are a frequently occurring multidisciplinary challenge in the care of patients with wounds, especially in older people. These are often inflammatory skin diseases like eczema that can be caused by various factors. These include allergens, noxa, incorrect skin care or prolonged contact with moisture. In the diagnostics, detailed medical history, clinical examination and allergological tests play important roles. Eczema can mostly be treated symptomatically with topical glucocorticoids. Calcineurin inhibitors are an alternative treatment, especially for longer term topical applications. In cases of impetiginized lesions, appropriate antimicrobial therapy should also be carried out. For long-term and preventive treatment the adequate use of skin care and skin protection products that help to strengthen or restore the skin barrier is decisive as well as the education of the patients and, if necessary, their relatives.


Asunto(s)
Eccema , Humanos , Anciano , Eccema/terapia , Eccema/tratamiento farmacológico , Inhibidores de la Calcineurina/uso terapéutico
11.
EMBO J ; 37(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29875132

RESUMEN

Astrocytes are involved in non-cell-autonomous pathogenic cascades in amyotrophic lateral sclerosis (ALS); however, their role is still debated. We show that astrocytic NF-κB activation drives microglial proliferation and leukocyte infiltration in the SOD1 (G93A) ALS model. This response prolongs the presymptomatic phase, delaying muscle denervation and decreasing disease burden, but turns detrimental in the symptomatic phase, accelerating disease progression. The transition corresponds to a shift in the microglial phenotype showing two effects that can be dissociated by temporally controlling NF-κB activation. While NF-κB activation in astrocytes induced a Wnt-dependent microglial proliferation in the presymptomatic phase with neuroprotective effects on motoneurons, in later stage, astrocyte NF-κB-dependent microglial activation caused an accelerated disease progression. Notably, suppression of the early microglial response by CB2R agonists had acute detrimental effects. These data identify astrocytes as important regulators of microglia expansion and immune response. Therefore, stage-dependent microglia modulation may be an effective therapeutic strategy in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/inmunología , Astrocitos/inmunología , FN-kappa B/inmunología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/terapia , Animales , Astrocitos/patología , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Microglía/inmunología , Microglía/patología , Neuronas Motoras/inmunología , Neuronas Motoras/patología , FN-kappa B/genética , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/inmunología , Superóxido Dismutasa/genética , Superóxido Dismutasa/inmunología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/inmunología
12.
Development ; 144(4): 612-623, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28196804

RESUMEN

Adult stem cells uphold a delicate balance between quiescent and active states, a deregulation of which can lead to age-associated diseases such as cancer. In Drosophila, intestinal stem cell (ISC) proliferation is tightly regulated and mis-regulation is detrimental to intestinal homeostasis. Various factors are known to govern ISC behavior; however, transcriptional changes in ISCs during aging are still unclear. RNA sequencing of young and old ISCs newly identified Nipped-A, a subunit of histone acetyltransferase complexes, as a regulator of ISC proliferation that is upregulated in old ISCs. We show that Nipped-A is required for maintaining the proliferative capacity of ISCs during aging and in response to tissue-damaging or tumorigenic stimuli. Interestingly, Drosophila Myc cannot compensate for the effect of the loss of Nipped-A on ISC proliferation. Nipped-A seems to be a superordinate regulator of ISC proliferation, possibly by coordinating different processes including modifying the chromatin landscape of ISCs and progenitors.


Asunto(s)
Células Madre Adultas/citología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Regulación del Desarrollo de la Expresión Génica , Intestinos/citología , Factores de Transcripción/fisiología , Envejecimiento , Animales , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Separación Celular , Cromatina/metabolismo , Citometría de Flujo , Proteínas Fluorescentes Verdes/metabolismo , Histonas/metabolismo , Homeostasis , Fenotipo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , Análisis de Secuencia de ARN , Transducción de Señal
13.
Contact Dermatitis ; 78(1): 41-54, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28895168

RESUMEN

BACKGROUND: Hand eczema, which is frequently caused by delayed-type allergy, is treated with 9-cis-retinoic acid (9cisRA). However, knowledge on how 9cisRA modulates skin immunity is sparse. OBJECTIVE: As dendritic cells (DCs) are central in the pathogenesis of contact allergy, we investigated 9cisRA modulation of DC function in murine contact hypersensitivity (CHS). METHODS: 9cisRA-differentiated DCs (9cisRA-DCs) were analysed for phenotype and function. In vivo 9cisRA-DCs were tested in the CHS model. RESULTS: 9cisRA induces the differentiation of a distinct CD103- CD207- regulatory DC phenotype. CD11c+ DCs differentiated with 9cisRA have lower expression of major histocompatibility complex-II and costimulatory molecules, but conversely have higher expression of the inhibitory coreceptor PD1-L. 9cisRA-DC culture does not induce the expression of proinflammatory cytokines, but strongly enhances osteopontin (OPN) secretion. 9cisRA-DCs are compromised in the induction of T cell proliferation in vitro, but efficiently convert naive T cells into regulatory T cells (Tregs). Notably, OPN-deficient 9cisRA-DCs show a loss of Treg-inducing function, which is re-established by substituting OPN. In vivo, in allergic mice, allergen-primed 9cisRA-DCs suppress allergic inflammation and induce Treg accumulation in skin draining lymph nodes. CONCLUSIONS: This study describes 9cisRA-mediated differentiation of a distinct DC phenotype that relies on OPN for Treg transformation and suppresses established CHS through Treg induction.


Asunto(s)
Antineoplásicos/farmacología , Células Dendríticas/inmunología , Dermatitis Alérgica por Contacto/inmunología , Hipersensibilidad Tardía/inmunología , Osteopontina/metabolismo , Linfocitos T Reguladores/inmunología , Tretinoina/farmacología , Alitretinoína , Animales , Antígenos CD/metabolismo , Antígenos de Superficie/metabolismo , Antígeno CD11c/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Cadenas alfa de Integrinas/metabolismo , Lectinas Tipo C/metabolismo , Activación de Linfocitos , Lectinas de Unión a Manosa/metabolismo , Ratones , Ratones Endogámicos BALB C , Osteopontina/genética , Fenotipo , Linfocitos T Reguladores/fisiología
14.
Dev Dyn ; 244(4): 591-606, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25690936

RESUMEN

BACKGROUND: Pluripotency, self-renewal, and differentiation are special features of embryonic stem (ES) cells, thereby providing valuable perspectives in regenerative medicine. Developmental processes require a fine-tuned organization, mainly regulated by the well-known JAK/STAT, PI3K/AKT, and ERK/MAPK pathways. SPREDs (Sprouty related proteins with EVH1 domain) were discovered as inhibitors of the ERK/MAPK signaling pathway, whereas nothing was known about their functions in ES cells and during early differentiation, so far. RESULTS: We generated SPRED1 and SPRED2 overexpressing and SPRED2 knockout murine ES cells to analyze the functions of SPRED proteins in ES cells and during early differentiation. Overexpression of SPREDs increases significantly the self-renewal and clonogenicity of murine ES cells, whereas lack of SPRED2 reduces proliferation and increases apoptosis. During early differentiation in embryoid bodies, SPREDs promote the pluripotent state and inhibit differentiation whereby mesodermal differentiation into cardiomyocytes is considerably delayed and inhibited. LIF- and growth factor-stimulation revealed that SPREDs inhibit ERK/MAPK activation in murine ES cells. However, no effects were detectable on LIF-induced activation of the JAK/STAT3, or PI3K/AKT signaling pathway by SPRED proteins. CONCLUSIONS: We show that SPREDs promote self-renewal and inhibit mesodermal differentiation of murine ES cells by selective suppression of the ERK/MAPK signaling pathway in pluripotent cells.


Asunto(s)
Células Madre Embrionarias/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Mesodermo/metabolismo , Proteínas Represoras/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Células Madre Embrionarias/citología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Transgénicos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal
15.
J Immunol ; 191(11): 5477-88, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24190659

RESUMEN

IL-17 is a critical factor in the pathogenesis of psoriasis and other inflammatory diseases. The impact of γδ T cells, accounting for an important source of IL-17 in acute murine IL-23- and imiquimod-induced skin inflammation, in human psoriasis is still unclear. Using the polygenic CD18(hypo) PL/J psoriasis mouse model spontaneously developing chronic psoriasiform dermatitis due to reduced CD18/ß2 integrin expression to 2-16% of wild-type levels, we investigated in this study the influence of adhesion molecule expression on generation of inflammatory γδ T cells and analyzed the occurrence of IL-17-producing γδ and CD4(+) T cells at different disease stages. Severity of CD18(hypo) PL/J psoriasiform dermatitis correlated with a loss of skin-resident Vγ5(+) T cells and concurrent skin infiltration with IL-17(+), IL-22(+), and TNF-α(+) γδTCR(low) cells preceded by increases in Vγ4(+) T cells in local lymph nodes. In vitro, reduced CD18 levels promoted expansion of inflammatory memory-type γδ T cells in response to IL-7. Similar to IL-17 or IL-23/p19 depletion, injection of diseased CD18(hypo) PL/J mice with anti-γδTCR Abs significantly reduced skin inflammation and largely eliminated pathological γδ and CD4(+) T cells. Moreover, CD18(hypo) γδ T cells induced allogeneic CD4(+) T cell responses more potently than CD18(wt) counterparts and, upon adoptive transfer, triggered psoriasiform dermatitis in susceptible hosts. These results demonstrate a novel function of reduced CD18 levels in generation of pathological γδ T cells that was confirmed by detection of increases in CD18(low) γδ T cells in psoriasis patients and may also have implications for other inflammatory diseases.


Asunto(s)
Antígenos CD18/metabolismo , Linfocitos T CD4-Positivos/inmunología , Dermatitis/inmunología , Psoriasis/inmunología , Subgrupos de Linfocitos T/inmunología , Traslado Adoptivo , Animales , Antígenos CD18/genética , Comunicación Celular , Proliferación Celular , Células Cultivadas , Enfermedad Crónica , Citocinas/inmunología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Regulación hacia Abajo , Humanos , Mediadores de Inflamación/inmunología , Ratones , Ratones Endogámicos , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo
16.
Clin Cancer Res ; 30(15): 3117-3127, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38771898

RESUMEN

Over the past decade, cancer immunotherapy has significantly advanced through the introduction of immune checkpoint inhibitors and the augmentation of adoptive cell transfer to enhance the innate cancer defense mechanisms. Despite these remarkable achievements, some cancers exhibit resistance to immunotherapy, with limited patient responsiveness and development of therapy resistance. Metabolic adaptations in both immune cells and cancer cells have emerged as central contributors to immunotherapy resistance. In the last few years, new insights emphasized the critical role of cancer and immune cell metabolism in animal models and patients. During therapy, immune cells undergo important metabolic shifts crucial for their acquired effector function against cancer cells. However, cancer cell metabolic rewiring and nutrient competition within tumor microenvironment (TME) alters many immune functions, affecting their fitness, polarization, recruitment, and survival. These interactions have initiated the development of novel therapies targeting tumor cell metabolism and favoring antitumor immunity within the TME. Furthermore, there has been increasing interest in comprehending how diet impacts the response to immunotherapy, given the demonstrated immunomodulatory and antitumor activity of various nutrients. In conclusion, recent advances in preclinical and clinical studies have highlighted the capacity of immune-based cancer therapies. Therefore, further exploration into the metabolic requirements of immune cells within the TME holds significant promise for the development of innovative therapeutic approaches that can effectively combat cancer in patients.


Asunto(s)
Inmunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/metabolismo , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Animales , Dieta
17.
Sci Rep ; 14(1): 8740, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627499

RESUMEN

Visual clinical diagnosis of dermatoses in people of color (PoC) is a considerable challenge in daily clinical practice and a potential cause of misdiagnosis in this patient cohort. The study aimed to determine the difference in visual diagnostic skills of dermatologists practicing in Germany in patients with light skin (Ls) and patients with skin of color (SoC) to identify a potential need for further education. From April to June 2023, German dermatologists were invited to complete an online survey with 24 patient photographs depicting 12 skin diseases on both Ls and SoC. The study's primary outcomes were the number of correctly rated photographs and the participants' self-assessed certainty about the suspected visual diagnosis in Ls compared to SoC. The final analysis included surveys from a total of 129 dermatologists (47.8% female, mean age: 39.5 years). Participants were significantly more likely to correctly identify skin diseases by visual diagnostics in patients with Ls than in patients with SoC (72.1% vs. 52.8%, p ≤ 0.001, OR 2.28). Additionally, they expressed higher confidence in their diagnoses for Ls than for SoC (73.9 vs. 61.7, p ≤ 0.001). Therefore, further specialized training seems necessary to improve clinical care of dermatologic patients with SoC.


Asunto(s)
Enfermedades de la Piel , Pigmentación de la Piel , Adulto , Femenino , Humanos , Masculino , Dermatólogos , Alemania , Enfermedades de la Piel/diagnóstico , Encuestas y Cuestionarios , Minorías Étnicas y Raciales
18.
Front Immunol ; 15: 1369190, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807589

RESUMEN

Melanoma causes the majority of skin cancer-related deaths. Despite novel therapy options, metastatic melanoma still has a poor prognosis. Immune checkpoint inhibition (ICI) therapy has been shown to prolong overall survival in patients with advanced melanoma, but mucosal melanomas respond less favorably compared to melanomas of cutaneous origin. We report on a patient with a mucosal melanoma of the rectum diagnosed in June 2020. Since a surgical intervention in order to achieve a tumor-free situation would have required an amputation of the rectum, a neo-adjuvant systemic immunotherapy with ipilimumab and nivolumab was initiated. As restaging and colonoscopy after four doses of this combination immunotherapy showed a partial response, the patient decided against the pre-planned surgery and a maintenance therapy with nivolumab was started. Repeated colonoscopy showed a complete response after four doses of nivolumab. After ongoing ICI therapy with nivolumab and no evidence of tumor relapse, immunotherapy was stopped in July 2022 after nearly 2 years of continuous treatment. The patient remained tumor-free during further follow-up. Neo-adjuvant immunotherapy is getting more explored in advanced melanoma. By administering ICI therapy before surgical resection of an essentially operable tumor, a stronger and more diverse immunological response is supposed to be achieved. Our reported case demonstrates that this approach could also be effective in mucosal melanoma despite of its generally lower response to immunotherapy.


Asunto(s)
Ipilimumab , Melanoma , Terapia Neoadyuvante , Nivolumab , Neoplasias del Recto , Humanos , Ipilimumab/administración & dosificación , Ipilimumab/uso terapéutico , Nivolumab/uso terapéutico , Nivolumab/administración & dosificación , Melanoma/terapia , Melanoma/tratamiento farmacológico , Terapia Neoadyuvante/métodos , Neoplasias del Recto/terapia , Neoplasias del Recto/tratamiento farmacológico , Neoplasias del Recto/patología , Neoplasias del Recto/inmunología , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resultado del Tratamiento , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inmunoterapia/métodos , Persona de Mediana Edad
19.
Nat Med ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085419

RESUMEN

The ecosystem of brain tumors is considered immunosuppressed, but our current knowledge may be incomplete. Here we analyzed clinical cell and tissue specimens derived from patients presenting with glioblastoma or nonmalignant intracranial disease to report that the cranial bone (CB) marrow, in juxtaposition to treatment-naive glioblastoma tumors, harbors active lymphoid populations at the time of initial diagnosis. Clinical and anatomical imaging, single-cell molecular and immune cell profiling and quantification of tumor reactivity identified CD8+ T cell clonotypes in the CB that were also found in the tumor. These were characterized by acute and durable antitumor response rooted in the entire T cell developmental spectrum. In contrast to distal bone marrow, the CB niche proximal to the tumor showed increased frequencies of tumor-reactive CD8+ effector types expressing the lymphoid egress marker S1PR1. In line with this, cranial enhancement of CXCR4 radiolabel may serve as a surrogate marker indicating focal association with improved progression-free survival. The data of this study advocate preservation and further exploitation of these cranioencephalic units for the clinical care of glioblastoma.

20.
Nat Cancer ; 5(3): 433-447, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286827

RESUMEN

Liver metastasis (LM) confers poor survival and therapy resistance across cancer types, but the mechanisms of liver-metastatic organotropism remain unknown. Here, through in vivo CRISPR-Cas9 screens, we found that Pip4k2c loss conferred LM but had no impact on lung metastasis or primary tumor growth. Pip4k2c-deficient cells were hypersensitized to insulin-mediated PI3K/AKT signaling and exploited the insulin-rich liver milieu for organ-specific metastasis. We observed concordant changes in PIP4K2C expression and distinct metabolic changes in 3,511 patient melanomas, including primary tumors, LMs and lung metastases. We found that systemic PI3K inhibition exacerbated LM burden in mice injected with Pip4k2c-deficient cancer cells through host-mediated increase in hepatic insulin levels; however, this circuit could be broken by concurrent administration of an SGLT2 inhibitor or feeding of a ketogenic diet. Thus, this work demonstrates a rare example of metastatic organotropism through co-optation of physiological metabolic cues and proposes therapeutic avenues to counteract these mechanisms.


Asunto(s)
Neoplasias Hepáticas , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas , Transducción de Señal , Insulina , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA