Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurooncol Pract ; 11(1): 92-100, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38222047

RESUMEN

Background: Electrocorticography (ECoG) language mapping is often performed extraoperatively, frequently involves offline processing, and relationships with direct cortical stimulation (DCS) remain variable. We sought to determine the feasibility and preliminary utility of an intraoperative language mapping approach guided by real-time visualization of electrocorticograms. Methods: A patient with astrocytoma underwent awake craniotomy with intraoperative language mapping, utilizing a dual iPad stimulus presentation system coupled to a real-time neural signal processing platform capable of both ECoG recording and delivery of DCS. Gamma band modulations in response to 4 language tasks at each electrode were visualized in real-time. Next, DCS was conducted for each neighboring electrode pair during language tasks. Results: All language tasks resulted in strongest heat map activation at an electrode pair in the anterior to mid superior temporal gyrus. Consistent speech arrest during DCS was observed for Object and Action naming tasks at these same electrodes, indicating good correspondence with ECoG heat map recordings. This region corresponded well with posterior language representation via preoperative functional MRI. Conclusions: Intraoperative real-time visualization of language task-based ECoG gamma band modulation is feasible and may help identify targets for DCS. If validated, this may improve the efficiency and accuracy of intraoperative language mapping.

2.
Clin Neurophysiol ; 145: 1-10, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370685

RESUMEN

OBJECTIVE: To evaluate the functional use of sub-band modulations in somatosensory evoked potentials (SSEPs) to discriminate between the primary somatosensory (S1) and motor (M1) areas and contrast the states of consciousness. METHODS: During routine intraoperative cortical mapping, SSEPs were recorded with electrocorticography (ECoG) grids from the sensorimotor cortex of eight patients in the anesthetized and awake states. We conducted a time-frequency analysis on the SSEP trace to extract the spectral modulations in each state and visualize their spatial topography. RESULTS: We observed late gamma modulation (60-250 Hz) in all subjects approximately 50 ms after stimulation onset, extending up to 250 ms in each state. The late gamma activity enhancement was predominant in S1 in the awake state, where it discriminated S1 from M1 at a higher accuracy (92 %) than in the anesthetized state (accuracy = 70 %). CONCLUSIONS: These results showed that sensorimotor mapping does not need to rely on only SSEP phase reversal. The long latency gamma modulation can serve as a biomarker for primary sensorimotor localization and monitor the level of consciousness in neurosurgical practice. SIGNIFICANCE: While the intraoperative assessment of SSEP phase reversal with ECoG is widely employed to delineate the central sulcus, the median nerve stimulation-induced spatio-spectral patterns can distinctly localize it and distinguish between conscious states.


Asunto(s)
Nervio Mediano , Corteza Motora , Humanos , Corteza Somatosensorial , Estado de Conciencia , Estimulación Eléctrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA