Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Divers ; 27(5): 2185-2215, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36331786

RESUMEN

Some novel triazole-bearing ketone and oxime derivatives were synthesized from Ibuprofen. In vitro cytotoxic activities of all synthesized molecules against five cancer lines (human breast cancer MCF-7, human lung cancer A549, human prostate cancer PC-3, human cervix cancer HeLa, and human chronic myelogenous leukemia K562 cell lines) were evaluated by MTT assay. In addition, mouse embryonic fibroblast cells (NIH/3T3) were also evaluated to determine the selectivity. Compounds 18, 36, and 45 were found to be the most cytotoxic, and their IC50 values were in the range of 17.46-68.76 µM, against the tested cancer cells. According to the results, compounds 7 and 13 demonstrated good anti-inflammatory activity against the microsomal enzyme prostaglandin E2 synthase-1 (mPGES-1) enzyme at IC50 values of 13.6 and 4.95 µM. The low cytotoxicity and non-mutagenity of these compounds were found interesting. Also, these compounds significantly prevented tube formation in angiogenesis studies. In conclusion, the anti-inflammatory and angiogenesis inhibitory activities of these compounds without toxicity suggested that they may be promising agents in anti-inflammatory treatment and they may be supportive agents for the cancer treatment.


Asunto(s)
Antineoplásicos , Ibuprofeno , Animales , Ratones , Femenino , Humanos , Relación Estructura-Actividad , Ibuprofeno/farmacología , Triazoles/farmacología , Fibroblastos , Antineoplásicos/farmacología , Células HeLa , Antiinflamatorios/farmacología , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga
2.
Biochem Biophys Res Commun ; 469(3): 743-7, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26697747

RESUMEN

Dengue virus (DENV) infection is a significant health threat to the global population with no therapeutic option. DENV NS5 RNA-dependent RNA polymerase (RdRp) is the key replicating protein of the virus and thus an attractive target for drug development. Herein, we report on the synthesis and biological evaluation of a series of hybrid thiazolidinone-thiadiazole derivatives as a new class of DENV-2 NS5 RdRp inhibitors. This yielded compounds 12 and 21 with IC50 values of 2.3 µM and 2.1 µM, respectively, as promising leads. Limited SAR analysis indicated 3-fluorobenzylidene as the optimal substituent at C5-position of the thiazolidinone core, whereas both 2-chlorophenyl and 3-fluorophenyl substituents were equally effective at C5-position of the 1,3,4-thiadiazole core. Biophysical characterization and molecular docking studies conferred the binding site of this scaffold on DENV NS5 polymerase. Binding mode of compound 21 in Thumb pocket-II of DENV-2 NS5 polymerase will form the basis for future structure-activity relationship optimization.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/ultraestructura , Tiadiazoles/química , Tiazolidinedionas/química , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/ultraestructura , Sitios de Unión , Combinación de Medicamentos , Descubrimiento de Drogas , Modelos Químicos , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Tiadiazoles/administración & dosificación , Tiazolidinedionas/administración & dosificación
3.
Biol Pharm Bull ; 39(4): 502-15, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27040623

RESUMEN

In view of the emergence and frequency of multidrug-resistant and extensively drug-resistant tuberculosis and consequences of acquired resistance to clinically used drugs, we undertook the design and synthesis of novel prototypes that possess the advantage of the two pharmacophores of thiourea and 1,3,4-thiadiazole in a single molecular backbone. Three compounds from our series were distinguished from the others by their promising activity profiles against Mycobacterium tuberculosis strain H37Rv. Compounds 11 and 19 were the most active representatives with minimum inhibitory concentration (MIC) values of 10.96 and 11.48 µM, respectively. Compound 15 was shown to inhibit M. tuberculosis strain H37Rv with an MIC value of 17.81 µM. Cytotoxicity results in the Vero cell line showed that these three derivatives had selectivity indices between 1.8 and 8.7. In order to rationalize the biological results of our compounds, molecular docking studies with the enoyl acyl carrier protein reductase (InhA) of M. tuberculosis were performed and compounds 11, 15, and 19 were found to have good docking scores in the range of -7.12 to -7.83 kcal/mol.


Asunto(s)
Antiinfecciosos/química , Tiadiazoles/química , Tiourea/análogos & derivados , Tiourea/química , Animales , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Diseño de Fármacos , VIH-1/efectos de los fármacos , VIH-2/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Tiadiazoles/farmacología , Tiourea/farmacología , Células Vero
4.
Arch Pharm (Weinheim) ; 348(1): 10-22, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25449674

RESUMEN

In continuation of our efforts to develop new derivatives as hepatitis C virus (HCV) NS5B inhibitors, we synthesized novel 5-arylidene-4-thiazolidinones. The novel compounds 29-42, together with their synthetic precursors 22-28, were tested for HCV NS5B inhibitory activity; 12 of these compounds displayed IC50 values between 25.3 and 54.1 µM. Compound 33, an arylidene derivative, was found to be the most active compound in this series with an IC50 value of 25.3 µM. Molecular docking studies were performed on the thumb pocket-II of NS5B to postulate the binding mode for these compounds.


Asunto(s)
Antivirales/síntesis química , Antivirales/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Hepacivirus/efectos de los fármacos , Tiazolidinas/síntesis química , Tiazolidinas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antivirales/metabolismo , Sitios de Unión , Línea Celular Tumoral , Diseño Asistido por Computadora , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/metabolismo , Hepacivirus/enzimología , Ensayos Analíticos de Alto Rendimiento , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Conformación Proteica , Relación Estructura-Actividad , Tiazolidinas/metabolismo , Proteínas no Estructurales Virales/metabolismo
5.
Arch Pharm (Weinheim) ; 346(2): 140-53, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23280502

RESUMEN

In accordance with our antiviral drug development attempt, acylhydrazone derivatives bearing amino acid side chains were synthesized for the evaluation of their antiviral activity against various types of viruses. Among these compounds, 8(S) , 11(S) , and 12(S) showed anti-HIV-1 activity with a 50% inhibitory concentration (IC(50)) =123.8 µM (selectivity index, SI>3), IC(50) =12.1 µM (SI>29), IC(50) =17.4 µM (SI>19), respectively. Enantiomers 8(R) , 11(R) , and 12(R) were inactive against the HIV-1 strain III(B) . Hydrazones 8(S) , 11(S) , and 12(S) which were active against HIV-1 wild type showed no inhibition against a double mutant NNRTI-resistant strain (K103N;Y181C). Molecular docking calculations of R- and S-enantiomers of 8, 11, and 12 were performed using the hydrazone-bound novel site of HIV-1 RT.


Asunto(s)
Fármacos Anti-VIH/síntesis química , VIH-1/efectos de los fármacos , Hidrazonas/síntesis química , Animales , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Técnicas de Cultivo de Célula , Línea Celular , Efecto Citopatogénico Viral , Humanos , Hidrazonas/química , Hidrazonas/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Estereoisomerismo
6.
Int J Pharm ; 635: 122716, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36791999

RESUMEN

Empagliflozin (EM) was successfully loaded in polycaprolactone/poly (L-lactic acid)/polymethyl methacrylate (PCL/PLA/PMMA) fibers. In the rat ß-cell line (BRIN-BD11), the insulin expression ratio of pancreatic ß-cells was stimulated at high and low glucose by culturing with tri-layer EM-loaded fiber (EMF) for 48 h. The expression ratios of glucokinase and GLUT-2 proteins increased after EMF treatment. According to the in vitro drug release test, 97% of all drug contained in fibers was released in a controlled manner for 24 h. The pharmacokinetic test revealed that the bioavailability was improved ∼4.8-fold with EMF treatment compared to EM-powder and blood glucose level was effectively controlled for 24 h with EMF. Oral administration of EMF exhibited a better sustainable anti-diabetic activity even in the half-dosage than EM-powder in streptozotocin/nicotinamide-induced T2DM rats. The levels of GLP-1, PPAR-γ, and insulin were increased while the levels of SGLT-2 and TNF-α were decreased with EMF treatment. Also, EMF recovered the histopathological changes in the liver, pancreas, and kidney in T2DM rats and protected pancreatic ß-cells. Consequently, EMF is suggested as an unprecedented and promotive treatment approach for T2DM with a higher bioavailability and better antidiabetic effect compared to conventional dosage forms.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Ratas , Animales , Hipoglucemiantes/farmacología , Polvos , Insulina , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucemia/metabolismo
7.
Chem Biol Drug Des ; 99(3): 398-415, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34873848

RESUMEN

In previous investigations, we identified a class of 1,3,4-thiadiazole derivatives with antiviral activity. N-{3-(Methylsulfanyl)-1-[5-(phenylamino)-1,3,4-thiadiazole-2-yl]propyl}benzamide emerged as a relevant lead compound for designing novel influenza A virus inhibitors. In the present study, we elaborated on this initial lead by performing chemical synthesis and antiviral evaluation of a series of structural analogues. During this research, thirteen novel 1,3,4-thiadiazole derivatives were synthesized by the cyclization of the corresponding thiosemicarbazides as synthetic precursors. The structures and the purities of the synthesized compounds were confirmed through chromatographic and spectral data. Four L-methionine-based 1,3,4-thiadiazole derivatives displayed activity against influenza A virus, the two best compounds being 24 carrying a 5-(4-chlorophenylamino)-1,3,4-thiadiazole moiety and 30 possessing a 5-(benzoylamino)-1,3,4-thiadiazole structure [antiviral EC50 against influenza A/H3N2 virus: 4.8 and 7.4 µM, respectively]. The 1,3,4-thiadiazole derivatives were inactive against influenza B virus and a wide panel of unrelated DNA and RNA viruses. Compound 24 represents a new class of selective influenza A virus inhibitors acting during the virus entry process, as evidenced by our findings in a time-of-addition assay. Molecular descriptors and in silico prediction of ADMET properties of the active compounds were calculated. According to in silico ADMET and drug similarity studies, active compounds have been estimated to be good candidates for oral administration with no apparent toxicity considerations.


Asunto(s)
Antivirales/síntesis química , Metionina/química , Tiadiazoles/química , Antivirales/química , Antivirales/farmacología , Diseño de Fármacos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/fisiología , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/fisiología , Relación Estructura-Actividad , Tiadiazoles/síntesis química , Tiadiazoles/farmacología , Internalización del Virus/efectos de los fármacos
8.
ChemMedChem ; 15(14): 1294-1309, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32459374

RESUMEN

Fungal infections are a global issue affecting over 150 million people worldwide annually, with 750 000 of these caused by invasive Candida infections. Azole drugs are the frontline treatment against fungal infections; however, resistance to current azole antifungals in C. albicans poses a threat to public health. Two series of novel azole derivatives, short and extended derivatives, have been designed, synthesised and investigated for CYP51 inhibitory activity, binding affinity and minimum inhibitory concentration (MIC) against C. albicans strains. The short derivatives were more potent against the C. albicans strains (e. g., MIC 2-(4-chlorophenyl)-N-(2,4-dichlorobenzyl)-3-(1H-imidazol-1-yl)propanamide (5 f) <0.03 µg/mL, N-(4-((4-chlorophenyl)sulfonamido)benzyl)-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propanamide (12 c), 1 µg/mL, fluconazole 0.125 µg/mL) but both displayed comparable enzyme binding and inhibition (5 f Kd 62±17 nM, IC50 0.46 µM; 12 c Kd 43±18 nM, IC50 0.33 µM, fluconazole Kd 41±13 nM, IC50 0.31 µM, posaconazole Kd 43±11 nM, IC50 0.2 µM). The short series had poor selectivity for CaCYP51 over the human homologue, whereas the selectivity of the extended series, for example, compound 12 c, was higher (21.5-fold) than posaconazole (4.7-fold) based on Kd values, although posaconazole was more selective (615-fold) than 12 c (461-fold) based on IC50 values. Based on inhibitory activity and selectivity profile, the extended series are the better of the two series for further development.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/farmacología , Amidas/farmacología , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Esterol 14-Desmetilasa/metabolismo , Inhibidores de 14 alfa Desmetilasa/síntesis química , Inhibidores de 14 alfa Desmetilasa/química , Amidas/síntesis química , Amidas/química , Antifúngicos/síntesis química , Antifúngicos/química , Candida albicans/enzimología , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
9.
Eur J Med Chem ; 43(2): 381-92, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17583388

RESUMEN

As a continuation of our previous efforts on N-alkyl/aryl-N'-[4-(4-alkyl/aryl-2,4-dihydro-3H-1,2,4-triazole-3-thione-5-yl)phenyl]thioureas 1-19 and N-alkyl/aryl-N'-[4-(3-aralkylthio-4-alkyl/aryl-4H-1,2,4-triazole-5-yl)phenyl]thioureas 20-22, a series of novel 5-[(4-aminophenoxy)methyl]-4-alkyl/aryl-2,4-dihydro-3H-1,2,4-triazole-3-thiones 23-26 and several related thioureas, N-alkyl/aryl-N'-{4-[(4-alkyl/aryl-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-yl)methoxy]phenyl}thioureas 27-42 were synthesized for evaluation of their antiviral potency. Structures of the synthesized compounds were confirmed by the use of (1)H NMR, (13)C NMR and HR-MS data. All compounds 1-42 were evaluated in vitro against HIV-1 (IIIB) and HIV-2 (ROD) strains in MT-4 cells, as well as other selected viruses such as HSV-1, HSV-2, Coxsackie virus B4, Sindbis virus and Varicella-zoster virus using HeLa, Vero, HEL and E6SM cell cultures, and anti-tuberculosis activity against Mycobacterium tuberculosis H37Rv. Compounds 4 and 5 showed weak activity against HSV-1, HSV-2 and TK(-) HSV, whereas eight compounds showed marginal activity against Coxsackie virus B4. The most active derivative in this series was compound 38 which showed moderate protection against Coxsackie virus B4 with an MIC value of 16 microg/ml and a selectivity index of 5. This compound was also active against thymidine kinase positive Varicella-zoster virus (TK(+) VZV, OKA strain) with an EC(50) value of 9.9 microg/ml. Compound 38 was the most active compound with 79% inhibition against M. tuberculosis H37Rv.


Asunto(s)
Antituberculosos/síntesis química , Antituberculosos/farmacología , Antivirales/síntesis química , Antivirales/farmacología , Tiourea/química , Triazoles/síntesis química , Animales , Línea Celular , Evaluación Preclínica de Medicamentos , Humanos , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Triazoles/química
10.
Eur J Med Chem ; 42(7): 893-901, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17418454

RESUMEN

Three novel series of 2',4'-difluoro-4-hydroxybiphenyl-3-carboxylic acid derivatives namely 4-substituted-1,2,4-triazoline-3-thiones (4a-g); 2-substituted-1,3,4-thiadiazoles (5a-g) and 2-substituted-1,3,4-oxadiazoles (6a-g) have been synthesized. Twenty-one of the newly synthesized compounds were tested against various bacteria, fungi, yeast species and virus. In addition, we have replaced the carboxylic acid group of diflunisal with heterocycles and the anti-inflammatory activity of heterocycles reported here. Compound (5d) showed activity against Escherichia coli A1 and Streptococcus pyogenes ATCC-176 at a concentration of 31.25 microg/mL, whereas cefepime, the drug used as standard, has been found less active against the bacteria mentioned above. Compound (4b) has exhibited activity against Aspergillus variecolor and Trichophyton rubrum at a concentration of 31.25 and 15.25 microg/mL, whereas Amphotericin B, the drug used as standard, has been found less active against the yeast and fungi. The highest antiviral activity was found in the 1,3,4-thiadiazole derivative (5a) having a methyl group at 2nd position against Sindbis virus at 9.6 microg/mL. Compound (4c) exhibited the highest anti-inflammatory activity (73.03%) whereas diflunisal, the drug used as standard, has been found less active (24.16%). Compound (5f) presented similar antinociceptive activity with the standard drug (paw withdrawal latency was 19.21 s compared to that of diflunisal which was 19.14s, in hot plate test).


Asunto(s)
Antiinfecciosos/síntesis química , Antiinflamatorios no Esteroideos/síntesis química , Diflunisal/análogos & derivados , Compuestos Heterocíclicos/síntesis química , Animales , Antiinfecciosos/farmacología , Antiinflamatorios no Esteroideos/farmacología , Bacterias/efectos de los fármacos , Femenino , Hongos/efectos de los fármacos , Compuestos Heterocíclicos/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Dolor/tratamiento farmacológico , Virus/efectos de los fármacos
11.
Eur J Med Chem ; 121: 58-70, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27214512

RESUMEN

In this study, a series of thiosemicarbazide derivatives 12-14, 1,2,4-triazol-3-thione derivatives 15-17 and compounds bearing 2-(4H-1,2,4-triazole-3-ylthio)acetamide structure 18-32 have been synthesized starting from phenolic compounds such as 2-naphthol, paracetamol and thymol. Structures and purity of the target compounds were confirmed by the use of their chromatographic and spectral data besides microanalysis. All of the synthesized new compounds 12-32 were evaluated for their anti-HIV activity. Among these compounds, three representatives 18, 19 and 25 were selected and evaluated by the National Cancer Institute (NCI) against the full panel of 60 human cancer cell lines derived from nine different cancer types. Antiproliferative effects of the selected compounds were demonstrated in human tumor cell lines K-562, A549 and PC-3. These compounds inhibited cell growth assessed by MTT assay. Compound 18, 19 and 25 exhibited anti-cancer activity with IC50 values of 5.96 µM (PC-3 cells), 7.90 µM (A549/ATCC cells) and 7.71 µM (K-562 cells), respectively. After the cell viability assay, caspase activation and Bcl-2 activity of the selected compounds were measured and the loss of mitochondrial membrane potential (MMP) was detected. Compounds 18, 19 and 25 showed a significant increase in caspase-3 activity in a dose-dependent manner. This was not observed for caspase-8 activity with compound 18 and 25, while compound 19 was significantly elevated only at the dose of 50 µM. In addition, all three compounds significantly decreased the mitochondrial membrane potential and expression of Bcl-2.


Asunto(s)
Acetamidas/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Acetamidas/síntesis química , Antineoplásicos/farmacología , Proteínas Reguladoras de la Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Relación Estructura-Actividad , Triazoles
12.
Eur J Med Chem ; 69: 931-41, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24161679

RESUMEN

Hepatitis C virus (HCV) NS5B polymerase is an important and attractive target for the development of anti-HCV drugs. Here we report on the design, synthesis and evaluation of twenty-four novel allosteric inhibitors bearing the 4-thiazolidinone scaffold as inhibitors of HCV NS5B polymerase. Eleven compounds tested were found to inhibit HCV NS5B with IC50 values ranging between 19.8 and 64.9 µM. Compound 24 was the most active of this series with an IC50 of 5.6 µM. A number of these derivatives further exhibited strong inhibition against HCV 1b and 2a genotypes in cell based antiviral assays. Molecular docking analysis predicted that the thiazolidinone derivatives bind to the NS5B thumb pocket-II (TP-II). Our results suggest that further optimization of the thiazolidinone scaffold may be possible to yield new derivatives with improved enzyme- and cell-based activity.


Asunto(s)
Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Hepacivirus/enzimología , Tiazolidinas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antivirales/síntesis química , Antivirales/química , Antivirales/clasificación , Células Cultivadas , Relación Dosis-Respuesta a Droga , Genotipo , Hepacivirus/genética , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Tiazolidinas/síntesis química , Tiazolidinas/química , Proteínas no Estructurales Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA