Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Blood ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776489

RESUMEN

Delays and risks associated with neurosurgical biopsies preclude timely diagnosis and treatment of central nervous system (CNS) lymphoma and other CNS neoplasms. We prospectively integrated targeted rapid genotyping of cerebrospinal fluid (CSF) into the evaluation of 70 patients with CNS lesions of unknown etiology. Participants underwent genotyping of CSF-derived DNA using a qPCR-based approach for parallel detection of single-nucleotide variants in the MYD88, TERT promoter, IDH1, IDH2, BRAF and H3F3A genes within 80 minutes of sample acquisition. Canonical mutations were detected in 42% of patients with neoplasms, including cases of primary and secondary CNS lymphoma, glioblastoma, IDH-mutant brainstem glioma and H3K27M-mutant diffuse midline glioma. Genotyping results eliminated the need for surgical biopsies in 7/33 (21.2%) cases of newly diagnosed neoplasms, resulting in significantly accelerated initiation of disease-directed treatment (median 3 vs 12 days; p = 0.027). This assay was then implemented in a Clinical Laboratory Improvement Amendments (CLIA) environment, with 2-day median turnaround for diagnosis of central nervous system lymphoma from 66 patients across 4 clinical sites. Our study prospectively demonstrates that targeted rapid CSF genotyping influences oncologic management for suspected CNS tumors.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39111869

RESUMEN

Some central nervous system (CNS) malignancies are highly aggressive and urgently need innovative treatment strategies to improve prognosis. A significant concern for therapeutic development is the time-consuming nature of developing treatments for CNS tumors. Therefore, a rapid and efficient translational approach is needed to address this problem. Translational and reverse translational research aims to bridge the gap between laboratory data and clinical applications and has been developed in the field of neuro-oncology. This study presents our translational platform systems for malignant CNS tumors, which combine an intraoperative integrated diagnostic system and comprehensive in vitro and in vivo assay systems. These laboratory systems may contribute to a better understanding of tumor biology and the development of novel therapeutic strategies for the poor prognosis of CNS tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA