Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(37): e2309221120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669383

RESUMEN

Emerging evidence suggests that dysregulation of neuroinflammation, particularly that orchestrated by microglia, plays a significant role in the pathogenesis of Alzheimer's disease (AD). Danger signals including dead neurons, dystrophic axons, phosphorylated tau, and amyloid plaques alter the functional phenotype of microglia from a homeostatic (M0) to a neurodegenerative or disease-associated phenotype, which in turn drives neuroinflammation and promotes disease. Thus, therapies that target microglia activation constitute a unique approach for treating AD. Here, we report that nasally administered anti-CD3 monoclonal antibody in the 3xTg AD mouse model reduced microglial activation and improved cognition independent of amyloid beta deposition. In addition, gene expression analysis demonstrated decreased oxidative stress, increased axogenesis and synaptic organization, and metabolic changes in the hippocampus and cortex of nasal anti-CD3 treated animals. The beneficial effect of nasal anti-CD3 was associated with the accumulation of T cells in the brain where they were in close contact with microglial cells. Taken together, our findings identify nasal anti-CD3 as a unique form of immunotherapy to treat Alzheimer's disease independent of amyloid beta targeting.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Administración Intranasal , Péptidos beta-Amiloides , Enfermedades Neuroinflamatorias , Anticuerpos Monoclonales , Modelos Animales de Enfermedad
2.
Brain Behav Immun ; 117: 242-254, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38281671

RESUMEN

Intestinal γδ T cells play an important role in shaping the gut microbiota, which is critical not only for maintaining intestinal homeostasis but also for controlling brain function and behavior. Here, we found that mice deficient for γδ T cells (γδ-/-) developed an abnormal pattern of repetitive/compulsive (R/C) behavior, which was dependent on the gut microbiota. Colonization of WT mice with γδ-/- microbiota induced R/C behavior whereas colonization of γδ-/- mice with WT microbiota abolished the R/C behavior. Moreover, γδ-/- mice had elevated levels of the microbial metabolite 3-phenylpropanoic acid in their cecum, which is a precursor to hippurate (HIP), a metabolite we found to be elevated in the CSF. HIP reaches the striatum and activates dopamine type 1 (D1R)-expressing neurons, leading to R/C behavior. Altogether, these data suggest that intestinal γδ T cells shape the gut microbiota and their metabolites and prevent dysfunctions of the striatum associated with behavior modulation.


Asunto(s)
Microbioma Gastrointestinal , Hipuratos , Linfocitos T , Animales , Ratones , Cuerpo Estriado , Neuronas , Conducta Compulsiva
3.
J Immunol ; 203(10): 2621-2629, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31578268

RESUMEN

Oral tolerance is defined as the specific suppression of cellular and/or humoral immune responses to an Ag by prior administration of the Ag through the oral route. Although the investigation of oral tolerance has classically involved Ag feeding, we have found that oral administration of anti-CD3 mAb induced tolerance through regulatory T (Treg) cell generation. However, the mechanisms underlying this effect remain unknown. In this study, we show that conventional but not plasmacytoid dendritic cells (DCs) are required for anti-CD3-induced oral tolerance. Moreover, oral anti-CD3 promotes XCL1 secretion by small intestine lamina propria γδ T cells that, in turn, induces tolerogenic XCR1+ DC migration to the mesenteric lymph node, where Treg cells are induced and oral tolerance is established. Consistent with this, TCRδ-/- mice did not develop oral tolerance upon oral administration of anti-CD3. However, XCL1 was not required for oral tolerance induced by fed Ags, indicating that a different mechanism underlies this effect. Accordingly, oral administration of anti-CD3 enhanced oral tolerance induced by fed MOG35-55 peptide, resulting in less severe experimental autoimmune encephalomyelitis, which was associated with decreased inflammatory immune cell infiltration in the CNS and increased Treg cells in the spleen. Thus, Treg cell induction by oral anti-CD3 is a consequence of the cross-talk between γδ T cells and tolerogenic DCs in the gut. Furthermore, anti-CD3 may serve as an adjuvant to enhance oral tolerance to fed Ags.


Asunto(s)
Complejo CD3/inmunología , Quimiocinas C/metabolismo , Tolerancia Inmunológica/efectos de los fármacos , Linfocitos Intraepiteliales/inmunología , Muromonab-CD3/administración & dosificación , Muromonab-CD3/farmacología , Administración Oral , Animales , Movimiento Celular/inmunología , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Técnicas de Inactivación de Genes , Genes Codificadores de la Cadena delta de los Receptores de Linfocito T/genética , Mucosa Intestinal/inmunología , Ganglios Linfáticos/inmunología , Masculino , Mesenterio , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Glicoproteína Mielina-Oligodendrócito/farmacología , Fragmentos de Péptidos/farmacología , Linfocitos T Reguladores/inmunología
4.
Microbiome ; 11(1): 32, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36814316

RESUMEN

BACKGROUND: Gamma-delta (γδ) T cells are a major cell population in the intestinal mucosa and are key mediators of mucosal tolerance and microbiota composition. Little is known about the mechanisms by which intestinal γδ T cells interact with the gut microbiota to maintain tolerance. RESULTS: We found that antibiotic treatment impaired oral tolerance and depleted intestinal γδ T cells, suggesting that the gut microbiota is necessary to maintain γδ T cells. We also found that mice deficient for γδ T cells (γδ-/-) had an altered microbiota composition that led to small intestine (SI) immune dysregulation and impaired tolerance. Accordingly, colonizing WT mice with γδ-/- microbiota resulted in SI immune dysregulation and loss of tolerance whereas colonizing γδ-/- mice with WT microbiota normalized mucosal immune responses and restored mucosal tolerance. Moreover, we found that SI γδ T cells shaped the gut microbiota and regulated intestinal homeostasis by secreting the fecal micro-RNA let-7f. Importantly, oral administration of let-7f to γδ-/- mice rescued mucosal tolerance by promoting the growth of the γδ-/--microbiota-depleted microbe Ruminococcus gnavus. CONCLUSIONS: Taken together, we demonstrate that γδ T cell-selected microbiota is necessary and sufficient to promote mucosal tolerance, is mediated in part by γδ T cell secretion of fecal micro-RNAs, and is mechanistically linked to restoration of mucosal immune responses. Video Abstract.


Asunto(s)
MicroARNs , Microbiota , Ratones , Animales , Linfocitos T , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Intestinos , Mucosa Intestinal , Inmunidad Mucosa
5.
Nat Commun ; 14(1): 4286, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463881

RESUMEN

Traumatic brain injury (TBI) is a leading cause of morbidity and mortality. The innate and adaptive immune responses play an important role in the pathogenesis of TBI. Gamma-delta (γδ) T cells have been shown to affect brain immunopathology in multiple different conditions, however, their role in acute and chronic TBI is largely unknown. Here, we show that γδ T cells affect the pathophysiology of TBI as early as one day and up to one year following injury in a mouse model. TCRδ-/- mice are characterized by reduced inflammation in acute TBI and improved neurocognitive functions in chronic TBI. We find that the Vγ1 and Vγ4 γδ T cell subsets play opposing roles in TBI. Vγ4 γδ T cells infiltrate the brain and secrete IFN-γ and IL-17 that activate microglia and induce neuroinflammation. Vγ1 γδ T cells, however, secrete TGF-ß that maintains microglial homeostasis and dampens TBI upon infiltrating the brain. These findings provide new insights on the role of different γδ T cell subsets after brain injury and lay down the principles for the development of targeted γδ T-cell-based therapy for TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Linfocitos Intraepiteliales , Masculino , Ratones , Animales , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Subgrupos de Linfocitos T , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA