Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1747, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36990990

RESUMEN

Animals are typically composed of hundreds of different cell types, yet mechanisms underlying the emergence of new cell types remain unclear. Here we address the origin and diversification of muscle cells in the non-bilaterian, diploblastic sea anemone Nematostella vectensis. We discern two fast and two slow-contracting muscle cell populations, which differ by extensive sets of paralogous structural protein genes. We find that the regulatory gene set of the slow cnidarian muscles is remarkably similar to the bilaterian cardiac muscle, while the two fast muscles differ substantially from each other in terms of transcription factor profiles, though driving the same set of structural protein genes and having similar physiological characteristics. We show that anthozoan-specific paralogs of Paraxis/Twist/Hand-related bHLH transcription factors are involved in the formation of fast and slow muscles. Our data suggest that the subsequent recruitment of an entire effector gene set from the inner cell layer into the neural ectoderm contributes to the evolution of a novel muscle cell type. Thus, we conclude that extensive transcription factor gene duplications and co-option of effector modules act as an evolutionary mechanism underlying cell type diversification during metazoan evolution.


Asunto(s)
Duplicación de Gen , Anémonas de Mar , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Anémonas de Mar/genética , Regulación de la Expresión Génica , Células Musculares , Filogenia
2.
Cell Rep ; 40(12): 111370, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36130520

RESUMEN

Communication in bilaterian nervous systems is mediated by electrical and secreted signals; however, the evolutionary origin and relation of neurons to other secretory cell types has not been elucidated. Here, we use developmental single-cell RNA sequencing in the cnidarian Nematostella vectensis, representing an early evolutionary lineage with a simple nervous system. Validated by transgenics, we demonstrate that neurons, stinging cells, and gland cells arise from a common multipotent progenitor population. We identify the conserved transcription factor gene SoxC as a key upstream regulator of all neuroglandular lineages and demonstrate that SoxC knockdown eliminates both neuronal and secretory cell types. While in vertebrates and many other bilaterians neurogenesis is largely restricted to early developmental stages, we show that in the sea anemone, differentiation of neuroglandular cells is maintained throughout all life stages, and follows the same molecular trajectories from embryo to adulthood, ensuring lifelong homeostasis of neuroglandular cell lineages.


Asunto(s)
Anémonas de Mar , Transcriptoma , Animales , Linaje de la Célula/genética , Neurogénesis/genética , Anémonas de Mar/genética , Factores de Transcripción/genética , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA