RESUMEN
Human induced pluripotent stem cells (iPSCs) and iPSC-derived neurons (iPSC-Ns) represent a differentiated modality toward developing novel cell-based therapies for regenerative medicine. However, the successful application of iPSC-Ns in cell-replacement therapies relies on effective cryopreservation. In this study, we investigated the role of ice recrystallization inhibitors (IRIs) as novel cryoprotectants for iPSCs and terminally differentiated iPSC-Ns. We found that one class of IRIs, N-aryl-D-aldonamides (specifically 2FA), increased iPSC post-thaw viability and recovery with no adverse effect on iPSC pluripotency. While 2FA supplementation did not significantly improve iPSC-N cell post-thaw viability, we observed that 2FA cryopreserved iPSC-Ns re-established robust neuronal network activity and synaptic function much earlier compared to CS10 cryopreserved controls. The 2FA cryopreserved iPSC-Ns retained expression of key neuronal specific and terminally differentiated markers and displayed functional electrophysiological and neuropharmacological responses following treatment with neuroactive agonists and antagonists. We demonstrate how optimizing cryopreservation media formulations with IRIs represents a promising strategy to improve functional cryopreservation of iPSCs and post-mitotic iPSC-Ns, the latter of which have been challenging to achieve. Developing IRI enabling technologies to support an effective cryopreservation and an efficiently managed cryo-chain is fundamental to support the delivery of successful iPSC-derived therapies to the clinic.
Asunto(s)
Hielo , Células Madre Pluripotentes Inducidas , Humanos , Hielo/efectos adversos , Neuronas , Criopreservación , Crioprotectores/farmacología , Crioprotectores/químicaRESUMEN
Understanding the role of astrocytes in stroke is assuming increasing prominence, not only as an important component on its own within the neurovascular unit, but also because astrocytes can influence neuronal outcome. Ischemia may induce astrogliosis and other phenotypic changes, but these remain poorly understood, in part due to limitations in reproducing these changes in vitro. Dibutyryl cyclic AMP-differentiated cultured astrocytes are more representative of the in vivo astroglial cell phenotype, and were much more susceptible than undifferentiated astrocytes to an ischemic-like stress, oxygen-glucose deprivation (OGD). OGD altered the expression/distribution and activity of glial glutamate transporters, impaired cellular glutamate uptake and decreased intracellular levels of glutathione preferentially in differentiated astrocytes. Resistance to OGD was conferred by inhibiting caspase-3 with DEVD-CHO and oxidative stress by the antioxidant N-acetylcysteine (NAC). The resistance of undifferentiated astrocytes to OGD may result from a transient but selective morphological transformation into Alzheimer type II astrocytes, an intermediary stage prior to transforming into reactive astrocytes. Co-culture of neurons with OGD-exposed astrocytes resulted in neurotoxicity, but at surprisingly lower levels with dying differentiated astrocytes. The antioxidant NAC or the 5-LOX inhibitor AA861 added upon co-culture delayed (day 1) but did not prevent neurotoxicity (day 3). Astrocytes undergoing apoptosis as a result of ischemia may represent a transient neuroprotective mechanism via ischemia-induced release of glutathione, but oxidative stress was responsible for neuronal demise when ischemia compromised astrocyte supportive functions.
Asunto(s)
Astrocitos/metabolismo , Glucosa/metabolismo , Neuronas/metabolismo , Oxígeno/metabolismo , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Benzoquinonas/farmacología , Ácidos Carboxílicos/farmacología , Caspasa 3/metabolismo , Técnicas de Cocultivo , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Inhibidores de la Lipooxigenasa/farmacología , Ratones , Neuronas/efectos de los fármacos , Estrés Oxidativo , Piridinas/farmacologíaRESUMEN
Modern in vitro technologies for preclinical research, including organ-on-a-chip, organoids- and assembloid-based systems, have rapidly emerged as pivotal tools for elucidating disease mechanisms and assessing the efficacy of putative therapeutics. In this context, advanced in vitro models of Parkinson's Disease (PD) offer the potential to accelerate drug discovery by enabling effective platforms that recapitulate both physiological and pathological attributes of the in vivo environment. Although these systems often aim at replicating the PD-associated loss of dopaminergic (DA) neurons, only a few have modelled the degradation of dopaminergic pathways as a way to mimic the disruption of downstream regulation mechanisms that define the characteristic motor symptoms of the disease. To this end, assembloids have been successfully employed to recapitulate neuronal pathways between distinct brain regions. However, the investigation and characterization of these connections through neural tracing and electrophysiological analysis remain a technically challenging and time-consuming process. Here, we present a novel bioengineered platform consisting of surface-grown midbrain and striatal organoids at opposite sides of a self-assembled DA pathway. In particular, dopaminergic neurons and striatal GABAergic neurons spontaneously form DA connections across a microelectrode array (MEA), specifically integrated for the real-time monitoring of electrophysiological development and stimuli response. Calcium imaging data showed spiking synchronicity of the two organoids forming the inter-organoid pathways (IOPs) demonstrating that they are functionally connected. MEA recordings confirm a more robust response to the DA neurotoxin 6-OHDA compared to midbrain organoids alone, thereby validating the potential of this technology to generate highly tractable, easily extractable real-time functional readouts to investigate the dysfunctional dopaminergic network of PD patients.
RESUMEN
This study determined how preconditioned neurons responded to oxygen-glucose deprivation (OGD) to result in neuroprotection instead of neurotoxicity. Neurons preconditioned using chronically elevated synaptic activity displayed suppressed elevations in extracellular glutamate ([glutamateex ]) and intracellular Ca(2+) (Ca(2+) in ) during OGD. The glutamate uptake inhibitor TBOA induced neurotoxicity, but at a longer OGD duration for preconditioned cultures, suggestive of delayed up-regulation of transporter activity relative to non-preconditioned cultures. This delay was attributed to a critically attenuated release of glutamate, based on tolerance observed against insults mimicking key neurotoxic signaling during OGD (OGD-mimetics). Specifically, in the presence of TBOA, preconditioned neurons displayed potent protection to the OGD-mimetics: ouabain (a Na(+) /K(+) ATPase inhibitor), high 55 mM KCl extracellular buffer (plasma membrane depolarization), veratridine (a Na(+) ionophore), and paraquat (intracellular superoxide producer), which correlated with suppressed [glutamateex ] elevations in the former two insults. Tolerance by preconditioning was reversed by manipulations that increased [glutamateex ], such as by exposure to TBOA or GABAA receptor agonists during OGD, or by exposure to exogenous NMDA or glutamate. Pre-synaptic suppression of neuronal glutamate release by preconditioning, possibly via suppressed exocytic release, represents a key convergence point in neuroprotection during exposure to OGD and OGD-mimetics.
Asunto(s)
Ácido Glutámico/metabolismo , Isquemia/patología , Precondicionamiento Isquémico/métodos , Neuronas/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/fisiología , Tamaño de la Célula , Células Cultivadas , Relación Dosis-Respuesta a Droga , Transportador 2 de Aminoácidos Excitadores/antagonistas & inhibidores , Femenino , Glucosa/deficiencia , Isquemia/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno , Receptores de GABA/efectos de los fármacos , Receptores Presinapticos/efectos de los fármacos , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Zinc/metabolismo , Ácido gamma-Aminobutírico/metabolismoRESUMEN
The goal of this study was to identify cocktails of drugs able to protect cultured rodent cortical neurons against increasing durations of oxygen-glucose deprivation (OGD). As expected, a cocktail composed of an NMDA and AMPA receptor antagonists and a voltage gated Ca2+ channel blocker (MK-801, CNQX and nifedipine, respectively) provided complete neuroprotection against mild OGD. Increasingly longer durations of OGD necessitated increasing the doses of MK-801 and CNQX, until these cocktails ultimately failed to provide neuroprotection against supra-lethal OGD, even at maximal drug concentrations. Surprisingly, supplementation of any of these cocktails with blockers of TRPM7 channels for increasing OGD durations was not neuroprotective, unless these blockers possessed the ability to inhibit NMDA receptors. Supplementation of the maximally effective cocktail with other NMDA receptor antagonists augmented neuroprotection, suggesting insufficient NMDAR blockade by MK-801. Substitution of MK-801 in cocktails with high concentrations of a glycine site NMDA receptor antagonist caused the greatest improvements in neuroprotection, with the more potent SM-31900 superior to L689,560. Substitution of CQNX in cocktails with AMPA receptor antagonists at high concentrations also improved neuroprotection, particularly with the combination of SYM2206 and NBQX. The most neuroprotective cocktail was thus composed of SM-31900, SYM2206, NBQX, nifedipine and the antioxidant trolox. Thus, the cumulative properties of antagonist potency and concentration in a cocktail dictate neuroprotective efficacy. The central target of supra-lethal OGD is excitotoxicity, which must be blocked to the greatest extent possible to minimize ion influx.
Asunto(s)
Fármacos Neuroprotectores , Accidente Cerebrovascular , Canales Catiónicos TRPM , 6-Ciano 7-nitroquinoxalina 2,3-diona , Maleato de Dizocilpina/farmacología , Glucosa , Humanos , Neuroprotección , Fármacos Neuroprotectores/farmacología , Nifedipino/farmacología , Oxígeno/metabolismo , Proteínas Serina-Treonina Quinasas , Receptores AMPA , Receptores de N-Metil-D-Aspartato , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/prevención & controlRESUMEN
Human induced pluripotent stem cell (iPSC)-derived neurons are of interest for studying neurological disease mechanisms, developing potential therapies and deepening our understanding of the human nervous system. However, compared to an extensive history of practice with primary rodent neuron cultures, human iPSC-neurons still require more robust characterization of expression of neuronal receptors and ion channels and functional and predictive pharmacological responses. In this study, we differentiated human amniotic fluid-derived iPSCs into a mixed population of neurons (AF-iNs). Functional assessments were performed by evaluating electrophysiological (patch-clamp) properties and the effect of a panel of neuropharmacological agents on spontaneous activity (multi-electrode arrays; MEAs). These electrophysiological data were benchmarked relative to commercially sourced human iPSC-derived neurons (CNS.4U from Ncardia), primary human neurons (ScienCell™) and primary rodent cortical/hippocampal neurons. Patch-clamp whole-cell recordings showed that mature AF-iNs generated repetitive firing of action potentials in response to depolarizations, similar to that of primary rodent cortical/hippocampal neurons, with nearly half of the neurons displaying spontaneous post-synaptic currents. Immunochemical and MEA-based analyses indicated that AF-iNs were composed of functional glutamatergic excitatory and inhibitory GABAergic neurons. Principal component analysis of MEA data indicated that human AF-iN and rat neurons exhibited distinct pharmacological and electrophysiological properties. Collectively, this study establishes a necessary prerequisite for AF-iNs as a human neuron culture model suitable for pharmacological studies.
Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Benchmarking , Fenómenos Electrofisiológicos , Humanos , Neuronas , Ratas , RoedoresRESUMEN
Exposing cultured cortical neurons to stimulatory agents - the K+ channel blocker 4-aminopyridine (4-ap), and the GABAA receptor antagonist bicuculline (bic) - for 48 h induces down-regulated synaptic scaling, and preconditions neurons to withstand subsequent otherwise lethal 'stroke-in-a-dish' insults; however, the degree to which usual neuronal function remains is unknown. As a result, multi-electrode array and patch-clamp electrophysiological techniques were employed to characterize hallmarks of spontaneous synaptic activity over a 12-day preconditioning/insult experiment. Spiking frequency increased 8-fold immediately upon 4-ap/bic treatment but declined within the 48 h treatment window to sub-baseline levels that persisted long after washout. Preconditioning resulted in key markers of network activity - spiking frequency, bursting and avalanches - being impervious to an insult. Surprisingly, preconditioning resulted in higher peak NMDA mEPSC amplitudes, resulting in a decrease in the ratio of AMPA:NMDA mEPSC currents, suggesting a relative increase in synaptic NMDA receptors. An investigation of a broad mRNA panel of excitatory and inhibitory signaling mediators indicated preconditioning rapidly up-regulated GABA synthesis (GAD67) and BDNF, followed by up-regulation of neuronal activity-regulated pentraxin and down-regulation of presynaptic glutamate release (VGLUT1). Preconditioning also enhanced surface expression of GLT-1, which persisted following an insult. Overall, preconditioning resulted in a reduced spiking frequency which was impervious to subsequent exposure to 'stroke-in-a-dish' insults, a phenotype initiated predominantly by up-regulation of inhibitory neurotransmission, a lower neuronal postsynaptic AMPA: NMDA receptor ratio, and trafficking of GLT-1 to astrocyte plasma membranes.
Asunto(s)
Antagonistas del GABA/toxicidad , Precondicionamiento Isquémico/métodos , Neuronas/metabolismo , Bloqueadores de los Canales de Potasio/toxicidad , Accidente Cerebrovascular/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Corteza Cerebral/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/fisiología , Neuronas/efectos de los fármacos , Neuronas/patología , Embarazo , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/inducido químicamente , Accidente Cerebrovascular/patologíaRESUMEN
Synthetic cannabinoids are marketed as legal alternatives to Δ9-THC, and are a growing worldwide concern as these drugs are associated with severe adverse effects. Unfortunately, insufficient information regarding the physiological and pharmacological effects of emerging synthetic cannabinoids (ESCs) makes their regulation by government authorities difficult. One strategy used to evade regulation is to distribute isomers of regulated synthetic cannabinoids. This study characterized the pharmacological properties of a panel of ESCs in comparison to Δ9-THC, as well as six JWH-122 isomers relative to its parent compound (JWH-122-4). Two cell-based assays were used to determine the potency and efficacy of ESCs and a panel of reference cannabinoids. HEK293T cells were transfected with human cannabinoid receptor 1 (CB1) and pGloSensor-22F, and the inhibition of forskolin-stimulated cyclic adenosine monophosphate (cAMP) levels was monitored in live cells. All ESCs examined were classified as agonists, with the following rank order of potency: Win 55,212-2 > CP 55,940 > JWH-122-4 > Δ9-THC ≈ RCS-4 ≈ THJ-2201 > JWH-122-5 > JWH-122-7 > JWH-122-2 ≈ AB-CHMINACA > JWH-122-8 > JWH-122-6 > JWH-122-3. Evaluation of ESC-stimulated Ca2+ transients in cultured rat primary hippocampal neurons confirmed the efficacy of four of the most potent ESCs (JWH-122-4, JWH-122-5, JWH-122-7 and AB-CHMINACA). This work helps regulatory agencies make informed decisions concerning these poorly characterized recreational drugs.
Asunto(s)
Cannabinoides/farmacología , Hipocampo/citología , Indazoles/farmacología , Indoles/química , Naftalenos/química , Neuronas/efectos de los fármacos , Valina/análogos & derivados , Cannabinoides/química , Células HEK293 , Humanos , Indazoles/química , Isomerismo , Naftalenos/farmacología , Valina/química , Valina/farmacologíaRESUMEN
MitoQ is an orally active antioxidant that has the ability to target mitochondrial dysfunction. The agent is currently under development by Antipodean Pharmaceuticals Inc in phase II clinical trials for Parkinson's disease and liver damage associated with HCV infection. MitoQ has demonstrated encouraging preclinical results in numerous studies in isolated mitochondria, cells and tissues undergoing oxidative stress and apoptotic death. MitoQ aims to not only mimic the role of the endogenous mitochondrial antioxidant coenzyme Q10 (CoQ10), but also to augment substantially the antioxidant capacity of CoQ to supraphysiological levels in a mitochondrial membrane potential-dependent manner. MitoQ represents the first foray into the clinic in an attempt to deliver an antioxidant to an intracellular region that is responsible for the formation of increased levels of potentially deleterious reactive oxygen species. Results from the clinical trials with MitoQ will have important repercussions on the relevance of a mitochondrial-targeted approach.
Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/farmacología , Antiparkinsonianos/farmacología , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Compuestos Organofosforados/farmacología , Ubiquinona/farmacología , Enfermedad de Alzheimer/prevención & control , Animales , Antiinflamatorios no Esteroideos/efectos adversos , Antiinflamatorios no Esteroideos/uso terapéutico , Antioxidantes/efectos adversos , Antioxidantes/uso terapéutico , Antiparkinsonianos/efectos adversos , Antiparkinsonianos/uso terapéutico , Apoptosis/efectos de los fármacos , Ensayos Clínicos como Asunto , Ataxia de Friedreich/prevención & control , Hepatitis C/tratamiento farmacológico , Humanos , Mitocondrias/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Fármacos Neuroprotectores/efectos adversos , Fármacos Neuroprotectores/uso terapéutico , Compuestos Organofosforados/efectos adversos , Compuestos Organofosforados/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Ubiquinona/efectos adversos , Ubiquinona/uso terapéuticoRESUMEN
Brief periods of ischemia have been shown in many experimental setups to provide tolerance against ischemia in multiple organs including the brain, when administered before (preconditioning) or even after (postconditioning) the normally lethal ischemia. In addition to these so-called ischemic conditionings, many pharmacological and natural agents (e.g., chemicals and nutraceuticals) can also act as potent pre- and post-conditioners. Deriving from the original concept of ischemic preconditioning, these various conditioning paradigms may be promising as clinical-stage therapies for prevention of ischemic-related injury, especially stroke. As no proven experimentally identified strategy has translated into clinical success, the experimental induction of neuroprotection using these various conditioning paradigms has raised several questions, even before considering translation to clinical studies in humans. The first aim of the review is to consider key questions on preclinical studies of pre- or post-conditioning modalities including those induced by chemical or nutraceuticals. Second, we make the argument that several key issues can be addressed by a novel concept, nutraceutical preconditioning. Specifically, α-linolenic acid (alpha-linolenic acid [ALA] an omega-3 polyunsaturated fatty acid), contained in plant-derived edible products, is essential in the daily diet, and a body of work has identified ALA as a pre- and post-conditioner of the brain. Nutritional intervention and functional food development are an emerging direction for preventing stroke damage, offering the potential to improving clinical outcomes through activation of the endogenous protective mechanisms known collectively as conditioning.
RESUMEN
This study challenges the conventional view that metalloporphyrins protect cultured cortical neurons in models of cerebral ischemia by acting as intracellular catalytic antioxidants [superoxide dismutase (SOD) mimetics]. High SOD-active Mn(III)porphyrins meso-substituted with N,N'-dimethylimidazolium or N-alkylpyridinium groups did not protect neurons against oxygen-glucose deprivation (OGD), although lower SOD-active and -inactive para isomers protected against N-methyl-D-aspartate (NMDA) exposure. Mn(III)meso-tetrakis(4-benzoic acid)porphyrin (Mn(III)TBAP), as well as SOD-inactive metalloTBAPs and other phenyl ring- or beta-substituted metalloporphyrins that contained redox-insensitive metals, protected cultures against OGD and NMDA neurotoxicity. Crucially, neuroprotective metalloporphyrins suppressed OGD- or NMDA-induced rises in intracellular Ca2+ concentration in the same general rank order as observed for neuroprotection. Results from paraquat toxicity, intracellular fluorescence quenching, electrophysiology, mitochondrial Ca2+, and spontaneous synaptic activity experiments suggest a model in which metalloporphyrins, acting at the plasma membrane, protect neurons against OGD by suppressing postsynaptic NMDA receptor-mediated Ca2+ rises, thereby indirectly preventing accumulation of neurotoxic mitochondrial Ca2+ levels. Though neuroprotective in a manner not originally intended, SOD-inactive metalloporphyrins may represent promising therapeutic agents in diseases such as cerebral ischemia, in which Ca2+ toxicity is implicated. Conventional syntheses aimed at improving the catalytic antioxidant capability and/or intracellular access of metalloporphyrins may not yield improved efficacy in some disease models.
Asunto(s)
Calcio/metabolismo , Metaloporfirinas/química , Fármacos Neuroprotectores/farmacología , Superóxido Dismutasa/química , Animales , Antioxidantes/metabolismo , Isquemia Encefálica/patología , Calcio/química , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Catálisis , Membrana Celular/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Electrofisiología , Depuradores de Radicales Libres/farmacología , Glucosa/metabolismo , Imidazoles/química , Metaloporfirinas/farmacología , Mitocondrias/metabolismo , Modelos Químicos , N-Metilaspartato/química , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Paraquat/farmacología , Permeabilidad , Ratas , Superóxido Dismutasa/metabolismo , Transmisión Sináptica/efectos de los fármacos , Factores de TiempoRESUMEN
Preconditioning is a well established neuroprotective modality. However, the mechanism and relative efficacy of neuroprotection between diverse preconditioners is poorly defined. Cultured neurons were preconditioned by 4-aminopyridine and bicuculline (4-AP/bic), rendering neurons tolerant to normally lethal (sufficient to kill most neurons) oxygen-glucose deprivation (OGD) or a chemical OGD-mimic, ouabain/TBOA, by suppression of extracellular glutamate (glutamateex) elevations. However, subjecting preconditioned neurons to longer-duration supra-lethal insults caused neurotoxic glutamateex elevations, thereby identifying a 'ceiling' to neuroprotection. Neuroprotective 'rescue' of neurons could be obtained by administration of an NMDA receptor antagonist, MK-801, just before glutamateex rose during these supra-lethal insults. Next, we evaluated if these concepts of glutamateex suppression during lethal OGD, and a neuroprotective ceiling requiring MK-801 rescue under supra-lethal OGD, extended to the preconditioning field. In screening a panel of 42 diverse putative preconditioners, neuroprotection against normally lethal OGD was observed in 12 cases, which correlated with glutamateex suppression, both of which could be reversed, either by the inclusion of a glutamate uptake inhibitor (TBOA, to increase glutamateex levels) during OGD or by exposure to supra-lethal OGD. Administrating MK-801 during the latter stages of supra-lethal OGD again rescued neurons, although to varying degrees dependent on the preconditioning agent. Thus, 'stress-testing' against the harshest ischemic-like insults yet tested identifies the most efficacious preconditioners, which dictates how early MK-801 needs to be administered during the insult in order to maintain neuroprotection. Preconditioning delays a neurotoxic rise in glutamateex levels, thereby 'buying time' for acute anti-excitotoxic pharmacologic rescue.
Asunto(s)
Hipoxia de la Célula/efectos de los fármacos , Maleato de Dizocilpina/farmacología , Glucosa/deficiencia , Precondicionamiento Isquémico , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , 4-Aminopiridina , Animales , Ácido Aspártico , Bicuculina , Hipoxia de la Célula/fisiología , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiopatología , Técnicas de Cocultivo , Ácido Glutámico/metabolismo , Ácido Glutámico/toxicidad , Precondicionamiento Isquémico/métodos , Neuronas/fisiología , Ouabaína , Ratas , Accidente Cerebrovascular , Factores de TiempoRESUMEN
Activation of cannabinoid receptor 1 (CB1) inhibits synaptic transmission in hippocampal neurons. The goal of this study was to evaluate the ability of benchmark and emerging synthetic cannabinoids to suppress neuronal activity in vitro using two complementary techniques, Ca(2+) spiking and multi-electrode arrays (MEAs). Neuron culture and fluorescence imaging conditions were extensively optimized to provide maximum sensitivity for detection of suppression of neural activity by cannabinoids. The neuronal Ca(2+) spiking frequency was significantly suppressed within 10min by the prototypic aminoalkylindole cannabinoid, WIN 55,212-2 (10µM). Suppression by WIN 55,212-2 was not improved by pharmacological intervention with signaling pathways known to interfere with CB1 signaling. The naphthoylindole CB1 agonist, JWH-018 suppressed Ca(2+) spiking at a lower concentration (2.5µM), and the CB1 antagonist rimonabant (5µM), reversed this suppression. In the MEA assay, the ability of synthetic CB1 agonists to suppress spontaneous electrical activity of hippocampal neurons was evaluated over 80min sessions. All benchmark (WIN 55,212-2, HU-210, CP 55,940 and JWH-018) and emerging synthetic cannabinoids (XLR-11, JWH-250, 5F-PB-22, AB-PINACA and MAM-2201) suppressed neural activity at a concentration of 10µM; furthermore, several of these compounds also significantly suppressed activity at 1µM concentrations. Rimonabant partially reversed spiking suppression of 5F-PB-22 and, to a lesser extent, of MAM-2201, supporting CB1-mediated involvement, although the inactive WIN 55,212-3 also partially suppressed activity. Taken together, synthetic cannabinoid CB1-mediated suppression of neuronal activity was detected using Ca(2+) spiking and MEAs.
Asunto(s)
Señalización del Calcio/efectos de los fármacos , Cannabinoides/farmacología , Electrofisiología/instrumentación , Neuronas/citología , Neuronas/efectos de los fármacos , Animales , Cannabinoides/síntesis química , Electrodos , Femenino , Hipocampo/citología , Embarazo , RatasRESUMEN
There has been a worldwide proliferation of synthetic cannabinoids that have become marketed as legal alternatives to cannabis (marijuana). Unfortunately, there is a dearth of information about the pharmacological effects of many of these emerging synthetic cannabinoids (ESCs), which presents a challenge for regulatory authorities that need to take such scientific evidence into consideration in order to regulate ECSs as controlled substances. We aimed to characterize the pharmacological properties of ten ESCs using two cell based assays that enabled the determination of potency and efficacy relative to a panel of well-characterized cannabinoids. Agonist-mediated inhibition of forskolin-stimulated cyclic adenosine monophosphate (cAMP) levels was monitored in live HEK293T cells transfected with human cannabinoid receptor 1 gene (CNR1) and pGloSensor-22F. Pharmacological analysis of this data indicated that all of the ESCs tested were full agonists, with the following rank order of potency: Win 55212-2≈5F-PB-22≈AB-PINACA≈EAM-2201≈MAM-2201>JWH-250≈ PB-22>AKB48 N-(5FP)>AKB-48≈STS-135>XLR-11. Assessment of agonist-stimulated depression of Ca(2+) transients was also used to confirm the efficacy of five ESCs (XLR-11, JWH-250, AB-PINACA, 5F-PB-22, and MAM-2201) in cultured primary hippocampal neurons. This work aims to help inform decisions made by regulatory agencies concerned with the profusion of these poorly characterized recreational drugs.
Asunto(s)
Cannabinoides/síntesis química , Cannabinoides/farmacología , Hipocampo/citología , Neuronas/citología , Neuronas/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Femenino , Células HEK293 , Humanos , Embarazo , Ratas , Ratas Sprague-DawleyRESUMEN
Cyclooxygenase-2 is harmful in models of cerebral ischemia yet plays a protective role in preconditioning-induced ischemic tolerance in the heart. This study examined the mechanisms underlying cyclooxygenase-2-mediated neurotoxicity and preconditioning-induced neuroprotection in an in vitro model of cerebral ischemia. Inhibition of cyclooxygenase-2 protects cortical neuronal cultures from death induced by oxygen-glucose deprivation and reduces oxygen-glucose deprivation-induced increases in intracellular Ca(2+) ([Ca(2+)](i)). In the present study, we determined if prostaglandin E(2) (PGE(2)) is responsible for this cyclooxygenase-2-mediated effect. Rat cortical cultures expressed mRNA for the prostanoid EP(1)-EP(4) receptors. PGE(2) reversed the attenuation in [Ca(2+)](i) and the protection offered by cyclooxygenase-2 inhibition during oxygen-glucose deprivation. These effects likely occur via activation of the prostanoid EP(1) receptor since blocking this receptor during oxygen-glucose deprivation reduced [Ca(2+)](i) and neurotoxicity. Next, we considered if the moderate activation of this pathway, by preconditioning cultures with sub-lethal oxygen-glucose deprivation, influenced the development of tolerance to an otherwise lethal oxygen-glucose deprivation insult, 48 h later. Inhibition of cyclooxygenase-2 during oxygen-glucose deprivation-preconditioning abolished preconditioning-induced protection. Furthermore, cultures were rendered tolerant to oxygen-glucose deprivation by the transient exposure to exogenous PGE(2) 24 h prior to the insult, indicating that this product of the cyclooxygenase-2 pathway is sufficient to induce ischemic tolerance. This study shows that cyclooxygenase-2 and PGE(2) are involved in both oxygen-glucose deprivation-induced neurotoxicity and preconditioning-induced neuroprotection. While neurotoxic in the context of lethal oxygen-glucose deprivation, the moderate activation of this signalling pathway confers ischemic tolerance.
Asunto(s)
Dinoprostona/fisiología , Neuronas/metabolismo , Animales , Encéfalo , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Hipoxia de la Célula/fisiología , Células Cultivadas , Ciclooxigenasa 2 , Inhibidores de la Ciclooxigenasa 2 , Inhibidores de la Ciclooxigenasa/farmacología , Ácido Dibenzo(b,f)(1,4)oxazepina-10(11H)-carboxílico, 8-cloro-, 2-acetilhidrazida/farmacología , Dinoprostona/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Feto , Expresión Génica/efectos de los fármacos , Glucosa/deficiencia , Masculino , Neuroglía/citología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Embarazo , Antagonistas de Prostaglandina/farmacología , Prostaglandina-Endoperóxido Sintasas/metabolismo , Pirazoles/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Prostaglandina E/antagonistas & inhibidores , Receptores de Prostaglandina E/genética , Subtipo EP1 de Receptores de Prostaglandina E , Subtipo EP4 de Receptores de Prostaglandina ERESUMEN
Neuronal activity in vitro exhibits network bursts characterized by brief periods of increased spike rates. Recent work shows that a subpopulation of neurons reliably predicts the occurrence of network bursts. Here, we examined the role of burst predictors in cultures undergoing an in vitro model of cerebral ischemia. Dissociated primary cortical neurons were plated on multielectrode arrays and spontaneous activity was recorded at 17 days in vitro (DIV). This activity was characterized by neuronal avalanches where burst statistics followed a power law. We identified burst predictors as channels that consistently fired immediately prior to network bursts. The timing of these predictors relative to bursts followed a skewed distribution that differed sharply from a null model based on branching ratio. A portion of cultures were subjected to an excitotoxic insult (DIV 18). Propidium iodine and fluorescence imaging confirmed cell death in these cultures. While the insult did not alter the distribution of avalanches, it resulted in alterations in overall spike rates. Burst predictors, however, maintained baseline levels of activity. The resilience of burst predictors following excitotoxic insult suggests a key role of these units in maintaining network activity following injury, with implications for the selective effects of ischemia in the brain.
Asunto(s)
Potenciales de Acción , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Potenciales de Acción/efectos de los fármacos , Algoritmos , Animales , Muerte Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ácido Glutámico/toxicidad , Modelos Biológicos , Neuronas/patología , Ratas , Transmisión SinápticaRESUMEN
Cerebral ischemic preconditioning (IPC) represents a potent endogenous method of inducing tolerance to otherwise lethal ischemia, both in in vivo and in vitro models. Investigation into the mechanism of this phenomenon has yet again transformed the way that neuroscientists view Ca2+. Generally viewed as an agent of neuronal death, particularly within an excitotoxic setting of cerebral ischemia, Ca2+ is now regarded as a key mediator of IPC. Classification of the role of Ca2+ in IPC defies simple description, but seems to possess a stimulatory role during the tolerance-inducing ischemia and an inhibitory or modulatory role during or following the second normally lethal ischemia.
Asunto(s)
Isquemia Encefálica/metabolismo , Calcio/fisiología , Precondicionamiento Isquémico/métodos , Animales , Circulación Cerebrovascular/fisiología , HumanosRESUMEN
The Cl(-) channel blockers, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) or 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) dose-dependently protected against oxygen-glucose deprivation in cultured rat cortical neurons. DIDS or SITS attenuated oxygen-glucose deprivation-induced increases in extracellular glutamate concentrations and intracellular Ca(2+). DIDS or SITS provided moderate protection against N-methyl-D-aspartate (NMDA) toxicity and decreased NMDA receptor-mediated increases in intracellular Ca(2+). Whole-cell NMDA receptor currents were attenuated 39+/-2% and 21+/-3% by 1 mM DIDS and SITS, respectively. Other Cl(-) channel blockers as equipotent as DIDS and SITS did not decrease oxygen-glucose deprivation- or NMDA-mediated neuronal Ca(2+) influx or toxicity. Neurotoxicity by exogenous glutamate was not prevented by SITS and was exacerbated by DIDS. Reductions in oxygen-glucose deprivation-induced increases in intracellular Ca(2+) levels underlie neuroprotection by DIDS and SITS. This was a reflection of lower extracellular [glutamate], direct inhibition of Ca(2+) influx through postsynaptic NMDA receptors, and possibly through other protective properties associated with DIDS and SITS.
Asunto(s)
Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-disulfónico/farmacología , Corteza Cerebral/efectos de los fármacos , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Anaerobiosis , Animales , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Glucosa/farmacología , Ácido Glutámico/farmacología , Ácido Glutámico/toxicidad , Potenciales de la Membrana/efectos de los fármacos , N-Metilaspartato/toxicidad , Neuronas/citología , Neuronas/fisiología , Oxígeno/farmacología , Embarazo , Ratas , Ratas Sprague-DawleyRESUMEN
Cyclooxygenase-2 inhibitors protect against excitotoxicity in vitro yet provide conflicting results in in vivo models of ischemia. To bridge the gap in understanding the discrepancies among these studies, the effects of different cyclooxygenase-2 inhibitors were studied in an in vitro model of ischemia. Oxygen-glucose deprivation (OGD) induced cyclooxygenase-2 protein expression in neuronal cortical cultures. Cyclooxygenase-2 inhibitors exhibited opposing effects on neuronal death induced by OGD. The acidic sulfonamides, N-(2-cyclohexyloxy-4-nitrophenyl) methanesulfonamide (NS-398) and N-(4-nitro-2-phenoxyphenyl)-methanesulfonamide (nimesulide), aggravated neuronal death by enhancing OGD-induced increases in extracellular glutamate and intracellular Ca2+ levels. In contrast, 1-[(4-methylsulfonyl)phenyl]-3-tri-fluoromethyl-5-(4-fluorophenyl)pyrazole (SC-58125) dose-dependently protected cultures against OGD by suppressing increases in extracellular glutamate and intracellular Ca2+ levels. The NS-398-induced aggravation of neuronal death was lost if the inhibitor was added only following the OGD. The timing of inhibitor application also determined its effects on N-methyl-D-aspartate (NMDA)-induced excitoxicity. NS-398 was protective when added both during and post-NMDA exposure, but not if NS-398 was also applied for 60 min prior to the insult. In contrast, SC-58125 afforded protection against NMDA in the presence or absence of a pre-incubation period. This study demonstrates that certain cyclooxygenase-2 inhibitors have opposing effects on neuronal survival depending on the timing of application and the nature of the insult. These results may account for the discrepancies among previous studies which used different inhibitors and different models of neurotoxicity.
Asunto(s)
Inhibidores de la Ciclooxigenasa/farmacología , Trastornos del Metabolismo de la Glucosa/complicaciones , Hipoxia/complicaciones , Síndromes de Neurotoxicidad/etiología , Animales , Calcio/metabolismo , Canadá , Muerte Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Ciclooxigenasa 2 , Inhibidores de la Ciclooxigenasa 2 , Citosol/efectos de los fármacos , Citosol/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Inducción Enzimática/efectos de los fármacos , Inducción Enzimática/genética , Espacio Extracelular/química , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Trastornos del Metabolismo de la Glucosa/metabolismo , Trastornos del Metabolismo de la Glucosa/prevención & control , Glutamatos/química , Glutamatos/efectos de los fármacos , Glutamatos/metabolismo , Hipoxia/metabolismo , Hipoxia/prevención & control , Ratones , Ratones Endogámicos C57BL , Síndromes de Neurotoxicidad/metabolismo , Nitrobencenos/antagonistas & inhibidores , Nitrobencenos/farmacología , Prostaglandina-Endoperóxido Sintasas/genética , Prostaglandina-Endoperóxido Sintasas/metabolismo , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/fisiología , Sulfonamidas/antagonistas & inhibidores , Sulfonamidas/farmacología , Factores de TiempoRESUMEN
Preconditioning is defined as a range of stimuli that allow cells to withstand subsequent anaerobic and other deleterious conditions. While cell protection under preconditioning is well established, this paper investigates the influence of neuroprotective preconditioning drugs, 4-aminopyridine and bicuculline (4-AP/bic), on synaptic communication across a broad network of in vitro rat cortical neurons. Using a permutation test, we evaluated cross-correlations of extracellular spiking activity across all pairs of recording electrodes on a 64-channel multielectrode array. The resulting functional connectivity maps were analyzed in terms of their graph-theoretic properties. A small-world effect was found, characterized by a functional network with high clustering coefficient and short average path length. Twenty-four hours after exposure to 4-AP/bic, small-world properties were comparable to control cultures that were not treated with the drug. Four hours following drug washout, however, the density of functional connections increased, while path length decreased and clustering coefficient increased. These alterations in functional connectivity were maintained at four days post-washout, suggesting that 4-AP/bic preconditioning leads to long-term effects on functional networks of cortical neurons. Because of their influence on communication efficiency in neuronal networks, alterations in small-world properties hold implications for information processing in brain systems. The observed relationship between density, path length, and clustering coefficient is captured by a phenomenological model where connections are added randomly within a spatially-embedded network. Taken together, results provide information regarding functional consequences of drug therapies that are overlooked in traditional viability studies and present the first investigation of functional networks under neuroprotective preconditioning.