Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(1): 101477, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896393

RESUMEN

Disturbance of the dynamic balance between tyrosine phosphorylation and dephosphorylation of signaling molecules, controlled by protein tyrosine kinases and protein tyrosine phosphatases (PTPs), is known to lead to the development of cancer. While most approved targeted cancer therapies are tyrosine kinase inhibitors, PTPs have long been stigmatized as undruggable and have only recently gained renewed attention in drug discovery. One PTP target is the Src-homology 2 domain-containing phosphatase 2 (SHP2). SHP2 is implicated in tumor initiation, progression, metastasis, and treatment resistance, primarily because of its role as a signaling nexus of the extracellular signal-regulated kinase pathway, acting upstream of the small GTPase Ras. Efforts to develop small molecules that target SHP2 are ongoing, and several SHP2 allosteric inhibitors are currently in clinical trials for the treatment of solid tumors. However, while the reported allosteric inhibitors are highly effective against cells expressing WT SHP2, none have significant activity against the most frequent oncogenic SHP2 variants that drive leukemogenesis in several juvenile and acute leukemias. Here, we report the discovery of novel furanylbenzamide molecules as inhibitors of both WT and oncogenic SHP2. Importantly, these inhibitors readily cross cell membranes, bind and inhibit SHP2 under physiological conditions, and effectively decrease the growth of cancer cells, including triple-negative breast cancer cells, acute myeloid leukemia cells expressing either WT or oncogenic SHP2, and patient-derived acute myeloid leukemia cells. These novel compounds are effective chemical probes of active SHP2 and may serve as starting points for therapeutics targeting WT or mutant SHP2 in cancer.


Asunto(s)
Benzamidas , Inhibidores Enzimáticos , Leucemia Mieloide Aguda , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Benzamidas/farmacología , Carcinogénesis , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/enzimología , Oncogenes , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo
2.
J Biol Chem ; 295(9): 2601-2613, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31953320

RESUMEN

The nonreceptor protein-tyrosine phosphatase (PTP) SHP2 is encoded by the proto-oncogene PTPN11 and is a ubiquitously expressed key regulator of cell signaling, acting on a number of cellular processes and components, including the Ras/Raf/Erk, PI3K/Akt, and JAK/STAT pathways and immune checkpoint receptors. Aberrant SHP2 activity has been implicated in all phases of tumor initiation, progression, and metastasis. Gain-of-function PTPN11 mutations drive oncogenesis in several leukemias and cause developmental disorders with increased risk of malignancy such as Noonan syndrome. Until recently, small molecule-based targeting of SHP2 was hampered by the failure of orthosteric active-site inhibitors to achieve selectivity and potency within a useful therapeutic window. However, new SHP2 allosteric inhibitors with excellent potency and selectivity have sparked renewed interest in the selective targeting of SHP2 and other PTP family members. Crucially, drug discovery campaigns focusing on SHP2 would greatly benefit from the ability to validate the cellular target engagement of candidate inhibitors. Here, we report a cellular thermal shift assay that reliably detects target engagement of SHP2 inhibitors. Using this assay, based on the DiscoverX InCell Pulse enzyme complementation technology, we characterized the binding of several SHP2 allosteric inhibitors in intact cells. Moreover, we demonstrate the robustness and reliability of a 384-well miniaturized version of the assay for the screening of SHP2 inhibitors targeting either WT SHP2 or its oncogenic E76K variant. Finally, we provide an example of the assay's ability to identify and characterize novel compounds with specific cellular potency for either WT or mutant SHP2.


Asunto(s)
Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Animales , Carcinogénesis/genética , Línea Celular , Mutación con Ganancia de Función , Humanos , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proto-Oncogenes Mas
3.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922601

RESUMEN

Many human diseases are the result of abnormal expression or activation of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Not surprisingly, more than 30 tyrosine kinase inhibitors (TKIs) are currently in clinical use and provide unique treatment options for many patients. PTPs on the other hand have long been regarded as "undruggable" and only recently have gained increased attention in drug discovery. Striatal-enriched tyrosine phosphatase (STEP) is a neuron-specific PTP that is overactive in Alzheimer's disease (AD) and other neurodegenerative and neuropsychiatric disorders, including Parkinson's disease, schizophrenia, and fragile X syndrome. An emergent model suggests that the increase in STEP activity interferes with synaptic function and contributes to the characteristic cognitive and behavioral deficits present in these diseases. Prior efforts to generate STEP inhibitors with properties that warrant clinical development have largely failed. To identify novel STEP inhibitor scaffolds, we developed a biophysical, label-free high-throughput screening (HTS) platform based on the protein thermal shift (PTS) technology. In contrast to conventional HTS using STEP enzymatic assays, we found the PTS platform highly robust and capable of identifying true hits with confirmed STEP inhibitory activity and selectivity. This new platform promises to greatly advance STEP drug discovery and should be applicable to other PTP targets.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas Tirosina Fosfatasas no Receptoras/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Humanos , Estructura Molecular
4.
PLoS Biol ; 12(8): e1001923, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25093460

RESUMEN

STEP (STriatal-Enriched protein tyrosine Phosphatase) is a neuron-specific phosphatase that regulates N-methyl-D-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking, as well as ERK1/2, p38, Fyn, and Pyk2 activity. STEP is overactive in several neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease (AD). The increase in STEP activity likely disrupts synaptic function and contributes to the cognitive deficits in AD. AD mice lacking STEP have restored levels of glutamate receptors on synaptosomal membranes and improved cognitive function, results that suggest STEP as a novel therapeutic target for AD. Here we describe the first large-scale effort to identify and characterize small-molecule STEP inhibitors. We identified the benzopentathiepin 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (known as TC-2153) as an inhibitor of STEP with an IC50 of 24.6 nM. TC-2153 represents a novel class of PTP inhibitors based upon a cyclic polysulfide pharmacophore that forms a reversible covalent bond with the catalytic cysteine in STEP. In cell-based secondary assays, TC-2153 increased tyrosine phosphorylation of STEP substrates ERK1/2, Pyk2, and GluN2B, and exhibited no toxicity in cortical cultures. Validation and specificity experiments performed in wild-type (WT) and STEP knockout (KO) cortical cells and in vivo in WT and STEP KO mice suggest specificity of inhibitors towards STEP compared to highly homologous tyrosine phosphatases. Furthermore, TC-2153 improved cognitive function in several cognitive tasks in 6- and 12-mo-old triple transgenic AD (3xTg-AD) mice, with no change in beta amyloid and phospho-tau levels.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/enzimología , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/enzimología , Inhibidores Enzimáticos/uso terapéutico , Proteínas Tirosina Fosfatasas no Receptoras/antagonistas & inhibidores , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/patología , Secuencia de Aminoácidos , Animales , Benzotiepinas/farmacología , Benzotiepinas/uso terapéutico , Dominio Catalítico , Muerte Celular/efectos de los fármacos , Corteza Cerebral/patología , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/patología , Cisteína/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Neuronas/efectos de los fármacos , Neuronas/patología , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/química , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Especificidad por Sustrato/efectos de los fármacos
5.
Circulation ; 131(7): 656-68, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25520375

RESUMEN

BACKGROUND: A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. A better understanding of the molecular mechanisms leading to platelet activation is important for the development of improved therapies. Recently, protein tyrosine phosphatases have emerged as critical regulators of platelet function. METHODS AND RESULTS: This is the first report implicating the dual-specificity phosphatase 3 (DUSP3) in platelet signaling and thrombosis. This phosphatase is highly expressed in human and mouse platelets. Platelets from DUSP3-deficient mice displayed a selective impairment of aggregation and granule secretion mediated by the collagen receptor glycoprotein VI and the C-type lectin-like receptor 2. DUSP3-deficient mice were more resistant to collagen- and epinephrine-induced thromboembolism compared with wild-type mice and showed severely impaired thrombus formation on ferric chloride-induced carotid artery injury. Intriguingly, bleeding times were not altered in DUSP3-deficient mice. At the molecular level, DUSP3 deficiency impaired Syk tyrosine phosphorylation, subsequently reducing phosphorylation of phospholipase Cγ2 and calcium fluxes. To investigate DUSP3 function in human platelets, a novel small-molecule inhibitor of DUSP3 was developed. This compound specifically inhibited collagen- and C-type lectin-like receptor 2-induced human platelet aggregation, thereby phenocopying the effect of DUSP3 deficiency in murine cells. CONCLUSIONS: DUSP3 plays a selective and essential role in collagen- and C-type lectin-like receptor 2-mediated platelet activation and thrombus formation in vivo. Inhibition of DUSP3 may prove therapeutic for arterial thrombosis. This is the first time a protein tyrosine phosphatase, implicated in platelet signaling, has been targeted with a small-molecule drug.


Asunto(s)
Fosfatasa 3 de Especificidad Dual/antagonistas & inhibidores , Fosfatasa 3 de Especificidad Dual/deficiencia , Activación Plaquetaria/fisiología , Embolia Pulmonar/enzimología , Animales , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Activación Plaquetaria/efectos de los fármacos , Embolia Pulmonar/sangre , Trombosis/sangre , Trombosis/enzimología
6.
Bioorg Med Chem ; 23(12): 2786-97, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25921264

RESUMEN

Arterial thrombosis is the primary cause of most cases of myocardial infarction and stroke, the leading causes of death in the developed world. Platelets, highly specialized cells of the circulatory system, are key contributors to thrombotic events. Antiplatelet drugs, which prevent platelets from aggregating, have been very effective in reducing the mortality and morbidity of these conditions. However, approved antiplatelet therapies have adverse side effects, most notably the increased risk of bleeding. Moreover, there remains a considerable incidence of arterial thrombosis in a subset of patients receiving currently available drugs. Thus, there is a pressing medical need for novel antiplatelet agents with a more favorable safety profile and less patient resistance. The discovery of novel antiplatelet targets is the matter of intense ongoing research. Recent findings demonstrate the potential of targeting key signaling molecules, including kinases and phosphatases, to prevent platelet activation and aggregation. Here, we offer perspectives to targeting members of the protein tyrosine phosphatase (PTP) superfamily, a major class of enzymes in signal transduction. We give an overview of previously identified PTPs in platelet signaling, and discuss their potential as antiplatelet drug targets. We also introduce VHR (DUSP3), a PTP that we recently identified as a major player in platelet biology and thrombosis. We review our data on genetic deletion as well as pharmacological inhibition of VHR, providing proof-of-principle for a novel and potentially safer VHR-based antiplatelet therapy.


Asunto(s)
Plaquetas/efectos de los fármacos , Plaquetas/enzimología , Descubrimiento de Drogas , Activación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/farmacología , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Animales , Humanos , Modelos Moleculares , Terapia Molecular Dirigida , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal/efectos de los fármacos , Trombosis/tratamiento farmacológico , Trombosis/enzimología
7.
Nat Chem Biol ; 8(5): 437-46, 2012 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-22426112

RESUMEN

Lymphoid tyrosine phosphatase (LYP) and C-terminal Src kinase (CSK) are negative regulators of signaling mediated through the T-cell antigen receptor (TCR) and are thought to act in a cooperative manner when forming a complex. Here we studied the spatiotemporal dynamics of the LYP-CSK complex in T cells. We demonstrate that dissociation of this complex is necessary for recruitment of LYP to the plasma membrane, where it downmodulates TCR signaling. Development of a potent and selective chemical probe of LYP confirmed that LYP inhibits T-cell activation when removed from CSK. Our findings may explain the reduced TCR-mediated signaling associated with a single-nucleotide polymorphism that confers increased risk for certain autoimmune diseases, including type 1 diabetes and rheumatoid arthritis, and results in expression of a mutant LYP that is unable to bind CSK. Our compound also represents a starting point for the development of a LYP-based treatment of autoimmunity.


Asunto(s)
Activación de Linfocitos , Proteína Tirosina Fosfatasa no Receptora Tipo 22/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Linfocitos T/metabolismo , Proteína Tirosina Quinasa CSK , Membrana Celular/metabolismo , Regulación hacia Abajo , Humanos , Unión Proteica , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Familia-src Quinasas
8.
Nat Genet ; 37(12): 1317-9, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16273109

RESUMEN

A SNP in the gene PTPN22 is associated with type 1 diabetes, rheumatoid arthritis, lupus, Graves thyroiditis, Addison disease and other autoimmune disorders. T cells from carriers of the predisposing allele produce less interleukin-2 upon TCR stimulation, and the encoded phosphatase has higher catalytic activity and is a more potent negative regulator of T lymphocyte activation. We conclude that the autoimmune-predisposing allele is a gain-of-function mutant.


Asunto(s)
Enfermedades Autoinmunes/enzimología , Diabetes Mellitus Tipo 1/enzimología , Polimorfismo de Nucleótido Simple , Proteínas Tirosina Fosfatasas/genética , Linfocitos T/inmunología , Alelos , Anticuerpos/farmacología , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Catálisis , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Interleucina-2/metabolismo , Italia , Activación de Linfocitos , Masculino , Mutación , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Proteína Tirosina Fosfatasa no Receptora Tipo 22 , Receptores de Antígenos de Linfocitos T/efectos de los fármacos , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/enzimología
9.
Sci Rep ; 13(1): 22015, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086986

RESUMEN

Protein phosphorylation is an integral part of many cellular processes, not only in eukaryotes but also in bacteria. The discovery of both prokaryotic protein kinases and phosphatases has created interest in generating antibacterial therapeutics that target these enzymes. NMA1982 is a putative phosphatase from Neisseria meningitidis, the causative agent of meningitis and meningococcal septicemia. The overall fold of NMA1982 closely resembles that of protein tyrosine phosphatases (PTPs). However, the hallmark C(X)5R PTP signature motif, containing the catalytic cysteine and invariant arginine, is shorter by one amino acid in NMA1982. This has cast doubt about the catalytic mechanism of NMA1982 and its assignment to the PTP superfamily. Here, we demonstrate that NMA1982 indeed employs a catalytic mechanism that is specific to PTPs. Mutagenesis experiments, transition state inhibition, pH-dependence activity, and oxidative inactivation experiments all support that NMA1982 is a genuine PTP. Importantly, we show that NMA1982 is secreted by N. meningitidis, suggesting that this protein is a potential virulence factor. Future studies will need to address whether NMA1982 is indeed essential for N. meningitidis survival and virulence. Based on its unique active site conformation, NMA1982 may become a suitable target for developing selective antibacterial drugs.


Asunto(s)
Neisseria meningitidis , Factores de Virulencia , Factores de Virulencia/genética , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Proteínas Tirosina Fosfatasas/química , Dominio Catalítico , Antibacterianos
10.
bioRxiv ; 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37292688

RESUMEN

Protein phosphorylation is an integral part of many cellular processes, not only in eukaryotes but also in bacteria. The discovery of both prokaryotic protein kinases and phosphatases has created interest in generating antibacterial therapeutics that target these enzymes. NMA1982 is a putative phosphatase from Neisseria meningitidis, the causative agent of meningitis and meningococcal septicemia. The overall fold of NMA1982 closely resembles that of protein tyrosine phosphatases (PTPs). However, the hallmark C(X)5R PTP signature motif, containing the catalytic cysteine and invariant arginine, is shorter by one amino acid in NMA1982. This has cast doubt about the catalytic mechanism of NMA1982 and its assignment to the PTP superfamily. Here, we demonstrate that NMA1982 indeed employs a catalytic mechanism that is specific to PTPs. Mutagenesis experiments, transition state inhibition, pH-dependence activity, and oxidative inactivation experiments all support that NMA1982 is a genuine phosphatase. Importantly, we show that NMA1982 is secreted by N. meningitidis, suggesting that this protein is a potential virulence factor. Future studies will need to address whether NMA1982 is indeed essential for N. meningitidis survival and virulence. Based on its unique active site conformation, NMA1982 may become a suitable target for developing selective antibacterial drugs.

11.
Res Sq ; 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37693380

RESUMEN

Protein phosphorylation is an integral part of many cellular processes, not only in eukaryotes but also in bacteria. The discovery of both prokaryotic protein kinases and phosphatases has created interest in generating antibacterial therapeutics that target these enzymes. NMA1982 is a putative phosphatase from Neisseria meningitidis, the causative agent of meningitis and meningococcal septicemia. The overall fold of NMA1982 closely resembles that of protein tyrosine phosphatases (PTPs). However, the hallmark C(X)5R PTP signature motif, containing the catalytic cysteine and invariant arginine, is shorter by one amino acid in NMA1982. This has cast doubt about the catalytic mechanism of NMA1982 and its assignment to the PTP superfamily. Here, we demonstrate that NMA1982 indeed employs a catalytic mechanism that is specific to PTPs. Mutagenesis experiments, transition state inhibition, pH-dependence activity, and oxidative inactivation experiments all support that NMA1982 is a genuine PTP. Importantly, we show that NMA1982 is secreted by N. meningitidis, suggesting that this protein is a potential virulence factor. Future studies will need to address whether NMA1982 is indeed essential for N. meningitidis survival and virulence. Based on its unique active site conformation, NMA1982 may become a suitable target for developing selective antibacterial drugs.

12.
Methods Mol Biol ; 2706: 167-175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37558948

RESUMEN

Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific enzyme that regulates the signaling molecules that control synaptic plasticity and neuronal function. Dysregulation of STEP is linked to the pathophysiology of Alzheimer's disease and other neuropsychiatric disorders. Experimental results from neurological deficit disease models suggest that the modulation of STEP could be beneficial in a number of these disorders. This prompted our work to identify small-molecule modulators of STEP to provide the foundation of a drug discovery program. As a component of our testing funnel to identify small-molecule STEP inhibitors, we have developed a cellular target engagement assay that can identify compounds that interact with STEP46. We provide a comprehensive protocol to enable the use of this miniaturized assay, and we demonstrate its utility to benchmark the binding of newly discovered compounds.


Asunto(s)
Enfermedad de Alzheimer , Proteínas Tirosina Fosfatasas no Receptoras , Humanos , Proteínas Tirosina Fosfatasas no Receptoras/genética , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Transducción de Señal
13.
Bio Protoc ; 12(18)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36248604

RESUMEN

Disturbance of the dynamic balance between protein tyrosine phosphorylation and dephosphorylation, modulated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), is known to be crucial for the development of many human diseases. The discovery of agents that restore this balance has been the subject of many drug research efforts, most of which have focused on tyrosine kinase inhibitors (TKIs), resulting in the development of more than 50 FDA-approved TKIs during the past two decades. More recently, accumulating evidence has suggested that members of the PTP superfamily are also promising drug targets, and efforts to discover tyrosine phosphatase inhibitors (TPIs) have increased dramatically. Here, we provide protocols for determining the potency of TPIs in vitro. We focus on the use of fluorescence-based substrates, which exhibit a dramatic increase in fluorescence emission when dephosphorylated by the PTP, and thus allow setting up highly sensitive and miniaturized phosphatase activity assays using 384-well or 1536-well microplates and a continuous (kinetic) assay format. The protocols cover PTP specific activity assays, Michaelis-Menten kinetics, dose-response inhibition assays, and dose-response data analysis for determining IC 50 values. Potential pitfalls are also discussed. While advanced instrumentation is utilized for compound spotting and liquid dispensing, all the assays can be adapted to existing equipment in most laboratories. Assays are described for selected PTP drug targets, including SHP2 ( PTPN11 ), PTP1B ( PTPN1 ), STEP ( PTPN5 ), and VHR ( DUSP3 ). However, all protocols are applicable to members of the PTP enzyme family in general. Graphical abstract.

14.
J Comput Aided Mol Des ; 25(9): 873-83, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21904909

RESUMEN

The lymphoid tyrosine phosphatase (LYP), encoded by the PTPN22 gene, has recently been identified as a promising drug target for human autoimmunity diseases. Like the majority of protein-tyrosine phosphatases LYP can adopt two functionally distinct forms determined by the conformation of the WPD-loop. The WPD-loop plays an important role in the catalytic dephosphorylation by protein-tyrosine phosphatases. Here we investigate the binding modes of two chemotypes of small molecule LYP inhibitors with respect to both protein conformations using computational modeling. To evaluate binding in the active form, we built a LYP protein structure model of high quality. Our results suggest that the two different compound classes investigated, bind to different conformations of the LYP phosphatase domain. Binding to the closed form is facilitated by an interaction with Asp195 in the WPD-loop, presumably stabilizing the active conformation. The analysis presented here is relevant for the design of inhibitors that specifically target either the closed or the open conformation of LYP in order to achieve better selectivity over phosphatases with similar binding sites.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 22/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 22/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Dominio Catalítico , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 22/química
15.
European J Org Chem ; 2010(9): 1728-1735, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22347809

RESUMEN

Co-translational myristoylation of the N-terminal glycine residue of diverse signaling proteins is required for membrane attachment and proper function of these molecules. The transfer of myristate from myristoyl-coenzyme A (myr-CoA) is catalyzed by the enzyme N-myristoyltransferase (Nmt). Nmt has been implicated in a number of human diseases, including cancer and epilepsy, as well as pathogenic mechanisms such as fungal and virus infections, including HIV and Hepatitis B. Rational design has led to the development of potent competitive inhibitors, including several non-hydrolysable acyl-CoA substrate analogues. However, linear synthetic strategies, following the route of the original CoA synthesis, generate such analogues in very low over all yields that typically are not sufficient for in vivo studies. Here, we present a new, highly convergent synthesis of myristoyl-carba(dethia)-coenzyme A 1 that allows to obtain this substrate analogue in 11-fold increased yield compared to the reported linear synthesis. In addition, enzymatic cleavage of the adenosine-2',3'-cyclophosphate in the last step of the synthesis proved to be an efficient way to obtain the isomerically pure 3'-phosphate 1.

16.
J Vis Exp ; (161)2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32744526

RESUMEN

The Src-homology 2 (SH2) domain-containing phosphatase 2 (SHP2), encoded by the PTPN11 proto-oncogene, is a key mediator of receptor tyrosine kinase (RTK)-driven cell signaling, promoting cell survival and proliferation. In addition, SHP2 is recruited by immune check point receptors to inhibit B and T cell activation. Aberrant SHP2 function has been implicated in the development, progression, and metastasis of many cancers. Indeed, small molecule SHP2 inhibitors have recently entered clinical trials for the treatment of solid tumors with Ras/Raf/ERK pathway activation, including tumors with some oncogenic Ras mutations. However, the current class of SHP2 inhibitors is not effective against the SHP2 oncogenic variants that occur frequently in leukemias, and the development of specific small molecules that target oncogenic SHP2 is the subject of current research. A common problem with most drug discovery campaigns involving cytosolic proteins like SHP2 is that the primary assays that drive chemical discovery are often in vitro assays that do not report the cellular target engagement of candidate compounds. To provide a platform for measuring cellular target engagement, we developed both wild-type and mutant SHP2 cellular thermal shift assays. These assays reliably detect target engagement of SHP2 inhibitors in cells. Here, we provide a comprehensive protocol of this assay, which provides a valuable tool for the assessment and characterization of SHP2 inhibitors.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Inhibidores Enzimáticos/farmacología , Humanos , Proto-Oncogenes Mas , Transducción de Señal
17.
J Med Chem ; 63(23): 14609-14625, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33200929

RESUMEN

Inhibition of autophagy, the major cellular recycling pathway in mammalian cells, is a promising strategy for the treatment of triple-negative breast cancer (TNBC). We previously reported SBI-0206965, a small molecule inhibitor of unc-51-like autophagy activating kinase 1 (ULK1), which is a key regulator of autophagy initiation. Herein, we describe the design, synthesis, and characterization of new dual inhibitors of ULK1 and ULK2 (ULK1/2). One inhibitor, SBP-7455 (compound 26), displayed improved binding affinity for ULK1/2 compared with SBI-0206965, potently inhibited ULK1/2 enzymatic activity in vitro and in cells, reduced the viability of TNBC cells and had oral bioavailability in mice. SBP-7455 inhibited starvation-induced autophagic flux in TNBC cells that were dependent on autophagy for survival and displayed synergistic cytotoxicity with the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib against TNBC cells. These data suggest that combining ULK1/2 and PARP inhibition may have clinical utility for the treatment of TNBC.


Asunto(s)
Antineoplásicos/farmacología , Homólogo de la Proteína 1 Relacionada con la Autofagia/antagonistas & inhibidores , Autofagia/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Animales , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Femenino , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirimidinas/síntesis química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
18.
Mol Cell Biol ; 26(5): 1806-16, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16479000

RESUMEN

Protein kinase C theta (PKC theta) is unique among PKC isozymes in its translocation to the center of the immune synapse in T cells and its unique downstream signaling. Here we show that the hematopoietic protein tyrosine phosphatase (HePTP) also accumulates in the immune synapse in a PKC theta-dependent manner upon antigen recognition by T cells and is phosphorylated by PKC theta at Ser-225, which is required for lipid raft translocation. Immune synapse translocation was completely absent in antigen-specific T cells from PKC theta-/- mice. In intact T cells, HePTP-S225A enhanced T-cell receptor (TCR)-induced NFAT/AP-1 transactivation, while the acidic substitution mutant was as efficient as wild-type HePTP. We conclude that HePTP is phosphorylated in the immune synapse by PKC theta and thereby targeted to lipid rafts to temper TCR signaling. This represents a novel mechanism for the active immune synapse recruitment and activation of a phosphatase in TCR signaling.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Isoenzimas/metabolismo , Microdominios de Membrana/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Linfocitos T/metabolismo , Animales , Dominio Catalítico , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Isoenzimas/genética , Células Jurkat/inmunología , Células Jurkat/metabolismo , Ratones , Fosforilación , Proteína Quinasa C/genética , Proteína Quinasa C-theta , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas no Receptoras , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Serina/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Transgenes
19.
Mol Immunol ; 45(11): 3074-84, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18457880

RESUMEN

We report that the protein tyrosine phosphatase PTP-PEST is expressed in resting human and mouse CD4(+) and CD8(+) T cells, but not in Jurkat T leukemia cells, and that PTP-PEST protein, but not mRNA, was dramatically downregulated in CD4(+) and CD8(+) primary human T cells upon T cell activation. This was also true in mouse CD4(+) T cells, but less striking in mouse CD8(+) T cells. PTP-PEST reintroduced into Jurkat at levels similar to those in primary human T cells, was a potent inhibitor of TCR-induced transactivation of reporter genes driven by NFAT/AP-1 and NF-kappaB elements and by the entire IL-2 gene promoter. Introduction of PTP-PEST into previously activated primary human T cells also reduced subsequent IL-2 production by these cells in response to TCR and CD28 stimulation. The inhibitory effect of PTP-PEST was associated with dephosphorylation the Lck kinase at its activation loop site (Y394), reduced early TCR-induced tyrosine phosphorylation, reduced ZAP-70 phosphorylation and inhibition of MAP kinase activation. We propose that PTP-PEST tempers T cell activation by dephosphorylating TCR-proximal signaling molecules, such as Lck, and that down-regulation of PTP-PEST may be a reason for the increased response to TCR triggering of previously activated T cells.


Asunto(s)
Regulación hacia Abajo , Regulación Enzimológica de la Expresión Génica , Proteína Tirosina Fosfatasa no Receptora Tipo 12/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/enzimología , Linfocitos T/inmunología , Animales , Proteína Tirosina Quinasa CSK , Humanos , Memoria Inmunológica , Células Jurkat , Leucemia/enzimología , Leucemia/patología , Activación de Linfocitos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Microdominios de Membrana/enzimología , Ratones , Ratones Endogámicos C57BL , Fosforilación , Fosfotirosina/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 12/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Activación Transcripcional , Familia-src Quinasas
20.
Biochim Biophys Acta ; 1771(6): 719-26, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17428729

RESUMEN

Protein-lipid interactions are important for protein targeting, signal transduction, lipid transport, lipid biosynthesis, lipid metabolism, and the maintenance of cellular compartments and membranes. Specific lipid-binding protein domains, such as PH, FYVE, PX, PHD, C2 and SEC14 homology domains, mediate interactions between proteins and specific phospholipids. Here we review the published literature, plus some of our most recent unpublished findings, regarding the biology of the SEC14 domain, also known as CRAL_TRIO domain.


Asunto(s)
Proteínas Portadoras/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Animales , Transporte Biológico , Humanos , Modelos Moleculares , Fosfatidilinositoles/metabolismo , Unión Proteica , Ratas , Transducción de Señal/fisiología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA