Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(2): 916-931, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37705305

RESUMEN

BACKGROUND: The apple (Malus domestica Borkh.) plays an important role in the trendy market of dried snacks because of its exceptional flavor and texture. In addition to the health benefits, there is also a general disposition to consume organic and do-it-yourself products. RESULTS: Three different drying temperatures, 65, 75, and 85 °C, were tested using a commercial ventilated drying oven in 'Royal Gala' and 'Golden Delicious' cultivars. Physical changes, including texture, color, shrinkage ratio, and microstructure, were evaluated for the temperatures and cultivars considered. Based on the results, particularly in terms of shrinkage, hardness, and crispiness, a drying temperature of 75 °C was selected to perform texture profile analyses throughout the drying period. Storability conditions were evaluated to determine the best moment to maintain the physical properties of the dried snacks during storage. Considered the more important property related to consumer preferences, crispiness was followed with puncture tests. CONCLUSION: The storage of apple chips, dried at the various temperatures, that must be performed in 5-10 min after removing from the drying oven, was assessed over the course of a month. Both the drying process and the subsequent storage proved effective in preserving the desired texture of the apple snacks, regardless of the specific cultivar or drying temperature used. Through this study, with a refined understanding of the changes occurring during the drying process and the optimization of storage conditions, we can confidently offer consumers the best combination of crispy and healthy snacks that meet their expectations. © 2023 Society of Chemical Industry.


Asunto(s)
Malus , Malus/química , Temperatura , Bocadillos , Desecación/métodos
2.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37373403

RESUMEN

Dps proteins (DNA-binding proteins from starved cells) are multifunctional stress defense proteins from the Ferritin family expressed in Prokarya during starvation and/or acute oxidative stress. Besides shielding bacterial DNA through binding and condensation, Dps proteins protect the cell from reactive oxygen species by oxidizing and storing ferrous ions within their cavity, using either hydrogen peroxide or molecular oxygen as the co-substrate, thus reducing the toxic effects of Fenton reactions. Interestingly, the interaction between Dps and transition metals (other than iron) is a known but relatively uncharacterized phenomenon. The impact of non-iron metals on the structure and function of Dps proteins is a current topic of research. This work focuses on the interaction between the Dps from Marinobacter nauticus (a marine facultative anaerobe bacterium capable of degrading petroleum hydrocarbons) and the cupric ion (Cu2+), one of the transition metals of greater biological relevance. Results obtained using electron paramagnetic resonance (EPR), Mössbauer and UV/Visible spectroscopies revealed that Cu2+ ions bind to specific binding sites in Dps, exerting a rate-enhancing effect on the ferroxidation reaction in the presence of molecular oxygen and directly oxidizing ferrous ions when no other co-substrate is present, in a yet uncharacterized redox reaction. This prompts additional research on the catalytic properties of Dps proteins.


Asunto(s)
Proteínas Bacterianas , Marinobacter , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Marinobacter/metabolismo , Oxidación-Reducción , Iones , Oxígeno
3.
J Synchrotron Radiat ; 29(Pt 2): 462-469, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35254310

RESUMEN

A wiggler is a high-power insertion device that was used in the past to produce a smooth wide-band X-ray spectrum. It is widely believed that on low-emittance synchrotrons this X-ray source loses its spatial and spectral homogeneity and therefore becomes less ideal than a scanning undulator. In this paper, we report on experimental and computational studies of an in-vacuum wiggler installed on the first fourth-generation synchrotron MAX IV. We investigate how several physical parameters affect the wiggler spectrum and propose a combination of a few of them that results in significant spectral smoothing. We also examine EXAFS spectra for possible distortions originating from the source imperfection. For this purpose, we scrutinize samples of various homogeneity. We conclude that wigglers are still an appropriate class of insertion devices, also on low-emittance synchrotrons.

4.
An Acad Bras Cienc ; 94(suppl 3): e20211446, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36074429

RESUMEN

Liqueur is an alcoholic beverage composed of a mixture of water, alcohol, sugar and substances that add flavour and aroma. Wild passion fruit is a product with good agricultural and nutritional characteristics, and is a low-cost, regional fruit that could be used to elaborate new products. The goal of this study was to develop passion fruit (Passiflora cincinnata Mast.) liqueurs and evaluate their chemical, physical and sensory characteristics. 5 formulations were prepared with defined pulp and syrup concentrations (F1, F2, F3, F4 and F5). The following physicochemical parameters were evaluated: alcohol degree (ºGL), density, pH, total titratable acidity, total soluble solids (TSS), reducing and non-reducing sugars and colour parameters. A sensory acceptance test was applied. The formulations F4 and F5, produced with 640g pulp/70ºBrix syrup and 500g pulp/55ºBrix syrup, respectively, showed the highest acceptance scores, probably due to their acid pH, high acidity and soluble solids values. In general, the beverages developed were considered feasible, aimed at aggregating value to a regional fruit and increasing family incomes. The high sensory acceptance indicated market potential for this aggregated value product.


Asunto(s)
Passiflora , Bebidas Alcohólicas , Frutas/química , Odorantes/análisis , Passiflora/química , Gusto
5.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35887179

RESUMEN

Encapsulins are protein nanocages capable of harboring smaller proteins (cargo proteins) within their cavity. The function of the encapsulin systems is related to the encapsulated cargo proteins. The Myxococcus xanthus encapsulin (EncA) naturally encapsulates ferritin-like proteins EncB and EncC as cargo, resulting in a large iron storage nanocompartment, able to accommodate up to 30,000 iron atoms per shell. In the present manuscript we describe the binding and protection of circular double stranded DNA (pUC19) by EncA using electrophoretic mobility shift assays (EMSA), atomic force microscopy (AFM), and DNase protection assays. EncA binds pUC19 with an apparent dissociation constant of 0.3 ± 0.1 µM and a Hill coefficient of 1.4 ± 0.1, while EncC alone showed no interaction with DNA. Accordingly, the EncAC complex displayed a similar DNA binding capacity as the EncA protein. The data suggest that initially, EncA converts the plasmid DNA from a supercoiled to a more relaxed form with a beads-on-a-string morphology. At higher concentrations, EncA self-aggregates, condensing the DNA. This process physically protects DNA from enzymatic digestion by DNase I. The secondary structure and thermal stability of EncA and the EncA-pUC19 complex were evaluated using synchrotron radiation circular dichroism (SRCD) spectroscopy. The overall secondary structure of EncA is maintained upon interaction with pUC19 while the melting temperature of the protein (Tm) slightly increased from 76 ± 1 °C to 79 ± 1 °C. Our work reports, for the first time, the in vitro capacity of an encapsulin shell to interact and protect plasmid DNA similarly to other protein nanocages that may be relevant in vivo.


Asunto(s)
Myxococcus xanthus , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Ferritinas/metabolismo , Hierro/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo
6.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35563263

RESUMEN

DNA-binding proteins from starved cells (Dps) are homododecameric nanocages, with N- and C-terminal tail extensions of variable length and amino acid composition. They accumulate iron in the form of a ferrihydrite mineral core and are capable of binding to and compacting DNA, forming low- and high-order condensates. This dual activity is designed to protect DNA from oxidative stress, resulting from Fenton chemistry or radiation exposure. In most Dps proteins, the DNA-binding properties stem from the N-terminal tail extensions. We explored the structural characteristics of a Dps from Deinococcus grandis that exhibits an atypically long N-terminal tail composed of 52 residues and probed the impact of the ionic strength on protein conformation using size exclusion chromatography, dynamic light scattering, synchrotron radiation circular dichroism and small-angle X-ray scattering. A novel high-spin ferrous iron-binding site was identified in the N-terminal tails, using Mössbauer spectroscopy. Our data reveals that the N-terminal tails are structurally dynamic and alter between compact and extended conformations, depending on the ionic strength of the buffer. This prompts the search for other physiologically relevant modulators of tail conformation and hints that the DNA-binding properties of Dps proteins may be affected by external factors.


Asunto(s)
Proteínas Bacterianas , Deinococcus , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Deinococcus/genética , Hierro/metabolismo , Modelos Moleculares , Concentración Osmolar
7.
Molecules ; 27(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36296556

RESUMEN

Edible insects are a potential alternative food source of high feed conversion efficiency and protein content. Zophobas atratus is an edible insect that adapts to different diets, enabling sustainable rearing by adding value to by-products and agro-industrial residues. This study aimed to evaluate the performance and nutritional characterization of Zophobas atratus larvae fed with different proportions of grape residue. Physicochemical analysis of the diets and larvae (AOAC procedures), fatty acid profile (chromatographic techniques), metals and non-metals (inductively coupled plasma optical emission spectrometry), larval mass gain, feed conversion efficiency, and mortality rate were assessed. The replacement of 25% of the conventional diet with grape residue increased lipid, ash, and fiber contents and reduced protein, carbohydrates, and energy. It promoted greater mass gain, lower mortality rate, and reduced larval growth time by 51%. Among the replacements, 25% resulted in the second-highest content of calcium, sodium, magnesium, and zinc, and the lowest content of potassium and phosphorus in the larvae. The 100% replacement resulted in the highest amounts of C18:2n6 (27.8%), C18:3n3 (2.2%), and PUFA (30.0%). Replacing 25% of the conventional diet with grape residue is equivalent to the conventional diet in many aspects and improves several larvae performance indices and nutritional values.


Asunto(s)
Calcio , Escarabajos , Animales , Larva , Calcio/metabolismo , Magnesio/metabolismo , Escarabajos/metabolismo , Alimentación Animal/análisis , Ácidos Grasos/metabolismo , Fósforo/metabolismo , Carbohidratos , Zinc/metabolismo , Sodio/metabolismo , Potasio/metabolismo
8.
J Synchrotron Radiat ; 28(Pt 3): 707-717, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33949980

RESUMEN

In this paper the design of the free-electron laser (FEL) in the SXL (Soft X-ray Laser) project at the MAX IV Laboratory is presented. The target performance parameters originate in a science case put forward by Swedish users and the SXL FEL is foreseen to be driven by the existing MAX IV 3 GeV linac. The SXL project is planned to be realized in different stages and in this paper the focus is on Phase 1, where the basic operation mode for the FEL will be SASE (self-amplified spontaneous emission), with an emphasis on short pulses. Simulation results for two linac bunches (high and low charge) with different pulse duration are illustrated, as well as the performance for two-color/two-pulses mode and power enhancement through tapering. Besides standard SASE and optical klystron configurations, the FEL setup is also tailored to allow for advanced seeding schemes operations. Finally possible upgrades that will be implemented in a second phase of the project are discussed.

9.
Eur Biophys J ; 50(3-4): 561-570, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34009405

RESUMEN

Iron-sulfur centers are widespread in living organisms, mostly performing electron transfer functions, either in electron transfer chains or as part of multi-enzymatic complexes, while being also present in enzyme active sites, handling substrate catalysis. Rubredoxin is the simplest iron-sulfur containing protein constituted by a single polypeptide chain of 50 to 60 amino acids, of which four cysteine residues are responsible for metal binding in a tetrahedral coordination sphere. In this manuscript we explore the structure and stability of both apo- and holo-forms of a Rubredoxin from Marinobacter hydrocarbonoclasticus using Synchrotron Radiation Circular Dichroism (SRCD) in combination with other biochemical and spectroscopic techniques. The results are consistent with a holo-protein form containing a monomeric iron center with UV-visible maxima at 760, 578, 494, 386, 356 and 279 nm, an intense EPR resonance with a g value around 4.3 and Mössbauer spectroscopy parameters of δ equal to 0.69 mm/s and ΔEQ equal to 3.25 mm/s, for the ferrous reconstituted state. SRCD data, obtained for the first time for the apo-form, show a quite defined structure with ∆ε maximum at 191 nm and minima at 203 and 231 nm. Most significantly, the presence of isosbestic points at 189 and 228 nm made the interconversion between the two stable apo- and holo-form solution structures clear. SRCD temperature dependence data shows that for both forms the denaturation process proceeds through an intermediate species.


Asunto(s)
Proteínas Hierro-Azufre/química , Dicroismo Circular , Espectroscopía de Resonancia por Spin del Electrón , Hierro/metabolismo , Marinobacter , Rubredoxinas , Azufre
10.
Eur Biophys J ; 50(3-4): 513-521, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33900431

RESUMEN

DNA-binding proteins from starved cells (Dps) are members of the ferritin family of proteins found in prokaryotes, with hollow rounded cube-like structures, composed of 12 equal subunits. These protein nanocages are bifunctional enzymes that protect the cell from the harmful reaction of iron and peroxide (Fenton reaction), thus preventing DNA damage by oxidative stress. Ferrous ions are oxidized at specific iron-binding sites in the presence of the oxidant and stored in its cavity that can accommodate up to ca. 500 iron atoms. DNA-binding properties of Dps are associated with the N-terminal, positive charge rich, extensions that can promote DNA binding and condensation, apparently by a cooperative binding mechanism. Here, we describe the binding and protection activities of Marinobacter hydrocarbonoclasticus Dps using Electrophoretic Mobility Shift Essays (EMSA), and synchrotron radiation circular dichroism (SRCD) spectroscopy. While no DNA condensation was observed in the tested conditions, it was possible to determine a Dps-DNA complex formation with an apparent dissociation constant of 6.0 ± 1.0 µM and a Hill coefficient of 1.2 ± 0.1. This interaction is suppressed by the inclusion of a single negative charge in the N-terminal region by point mutation. In Dps proteins containing a ferric mineral core (above 96 Fe/protein), DNA binding was impaired. SRCD data clearly showed that no significant modification existed either in secondary structure or protein stability of WT, Q14E variant and core containing proteins. It was, however, interesting to note that, in our experimental conditions, thermal denaturation induced protein aggregation that caused artifacts in thermal denaturation curves, which were dependent on radiation flux and vertical arrangement of the CD cell.


Asunto(s)
Marinobacter , Proteínas Bacterianas/genética , ADN , Hierro , Modelos Moleculares
11.
Eur Biophys J ; 50(3-4): 411-427, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33881594

RESUMEN

Microscale thermophoresis (MST), and the closely related Temperature Related Intensity Change (TRIC), are synonyms for a recently developed measurement technique in the field of biophysics to quantify biomolecular interactions, using the (capillary-based) NanoTemper Monolith and (multiwell plate-based) Dianthus instruments. Although this technique has been extensively used within the scientific community due to its low sample consumption, ease of use, and ubiquitous applicability, MST/TRIC has not enjoyed the unambiguous acceptance from biophysicists afforded to other biophysical techniques like isothermal titration calorimetry (ITC) or surface plasmon resonance (SPR). This might be attributed to several facts, e.g., that various (not fully understood) effects are contributing to the signal, that the technique is licensed to only a single instrument developer, NanoTemper Technology, and that its reliability and reproducibility have never been tested independently and systematically. Thus, a working group of ARBRE-MOBIEU has set up a benchmark study on MST/TRIC to assess this technique as a method to characterize biomolecular interactions. Here we present the results of this study involving 32 scientific groups within Europe and two groups from the US, carrying out experiments on 40 Monolith instruments, employing a standard operation procedure and centrally prepared samples. A protein-small molecule interaction, a newly developed protein-protein interaction system and a pure dye were used as test systems. We characterized the instrument properties and evaluated instrument performance, reproducibility, the effect of different analysis tools, the influence of the experimenter during data analysis, and thus the overall reliability of this method.


Asunto(s)
Benchmarking , Laboratorios , Calorimetría , Reproducibilidad de los Resultados , Temperatura
12.
Environ Res ; 200: 111430, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34062199

RESUMEN

A wireless UV-A LEDs lab-scale reactor powered by a resonant inductive coupling (RLC) system was built to maximize the UV photon absorption of agro-industrial wastewaters. The UV-A LEDs (λ = 365 nm) energy was supplied through a magnetic field generated inside of the photoreactor by induction coils placed on the external wall made of polyvinyl chloride. Immersing the light sources in the wastewater increases the photon transfer efficiency and the reaction rate. Maximum magnetic field and optical irradiance were obtained at 26.8 and 27.0 kHz, respectively. As proof-of-concept, elderberry wastewater (EW), olive washing wastewater (OWW) and white and red winery wastewaters (WWW and RWW) were treated combining the wireless UV-A LEDs with the Advanced Oxidation Process (AOP) - Fenton reagent. Fenton experiments were performed using [Fe2+] = 10 mg L-1, [H2O2] = 500 mg L-1, pH = 3 and a reaction time of 4 h. With EW a DOC removal of 35% (k = 0.0696 h-1) was achieved, whereas adding the wireless UV-A LEDs (f = 26.8 kHz) 53% was attained (k = 0.1722 h-1). The Electric Energy per Order (EEO) for the wireless UV-A LEDs consumption was calculated (EEO LEDs = 48.7 kWh m-3 order-1) and for all the remain equipment (air pump, RC box and power amplifier), EEO total = 495 kWh m-3 order-1. Experiments with OWW presented a DOC removal of 62% and a EEO LEDs = 40.5 kWh m-3 order-1; RWW shown 40% of DOC removal and a EEO LEDs = 68.4 kWh m-3 order-1, while with WWW 35% of DOC removal and a EEO LEDs = 79.8 kWh m-3 order-1 were obtained. This work shows that wireless UV-A LEDs can be a promising alternative to conventional UV lamps and wired LEDs in the treatment of real wastewaters. However, optimization of the induction system is still needed, as well as the number and wavelength of the LEDs (e.g. UV-C LEDs) to reduce the overall treatment costs.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Peróxido de Hidrógeno , Oxidación-Reducción , Rayos Ultravioleta , Eliminación de Residuos Líquidos , Aguas Residuales
13.
Org Biomol Chem ; 18(45): 9300-9307, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33169764

RESUMEN

A missense mutant of a Dps protein (DNA-binding protein from starved cells) from Marinobacter hydrocarbonoclasticus was used as a building block to develop a new supramolecular assembly complex which enhances the iron uptake, a physiological function of this mini-ferritin. The missense mutation was conducted in an exposed and flexible region of the N-terminal, wherein a threonine residue in position 10 was replaced by a cysteine residue (DpsT10C). This step enabled a click chemistry approach to the variant DpsT10C, where a thiol-ene coupling occurs. Two methods and two types of linker were used resulting in two different mini-ferritin supramolecular polymers, which have maintained secondary structure and native iron uptake physiological function. Electrophoretic assays and mass spectrometry were utilized to confirm that both functionalization and coupling reactions occured as predicted. The secondary structure has been investigated by circular dichroism and synchrotron radiation circular dichroism. Size and morphology were obtained by dynamic light scattering, size exclusion chromatography and atomic force microscopy, respectively. The iron uptake of the synthesized protein polymers was confirmed by UV-Vis spectroscopy loading assays.

14.
Proc Natl Acad Sci U S A ; 114(48): 12691-12695, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29133425

RESUMEN

We report the results of the direct comparison of a freely expanding turbulent Bose-Einstein condensate and a propagating optical speckle pattern. We found remarkably similar statistical properties underlying the spatial propagation of both phenomena. The calculated second-order correlation together with the typical correlation length of each system is used to compare and substantiate our observations. We believe that the close analogy existing between an expanding turbulent quantum gas and a traveling optical speckle might burgeon into an exciting research field investigating disordered quantum matter.

15.
J Environ Manage ; 269: 110740, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32430282

RESUMEN

An ultraviolet light emitting diode (UV-A LED) system was built to test the capability of performing heterogeneous photocatalysis using TiO2 P25. The LEDs maximum wavelength is 365 nm with an irradiance power of 85 W m-2. The device was tested in batch and continuous (CSTR) mode in a laboratorial scale reactor. The degradation of an agro-industrial wastewater model compound (p-hydroxybenzoic acid, pHBA) was investigated, assessing the effect of different experimental conditions such as pH, pHBA and TiO2 concentration keeping constant the UV-A LEDs power and temperature. The photodegradation of different concentrations of pHBA with [TiO2] = 500 mg L-1, IUV = 85 W m-2 and a T = 21 °C were analysed by pseudo-first order kinetics. The results were applied to the Langmuir-Hinshelwood model yielding kc = 0.885 mg L-1 min-1 and kLH = 0.217 L mg-1. In a comparative experiment the UV-A LEDs system showed faster kinetics (k = 0.0134 min-1) than solar radiation (IUV = 23 W m-2; k = 0.0077 min-1), with [pHBA] = 75 mg L-1 and [TiO2] = 500 mg L-1. The values of the Electric Energy per Order (EEO) = 115 kWh m-3 order-1 and the Specific Applied Energy (ESAE) = 318 kWh mol-1 order-1 were obtained with [TiO2] = 1000 mg L-1 and [pHBA] = 50 mg L-1. Analogous results were obtained ([TiO2] = 500 mg L-1) in a CSTR with a slight decrease in the first order kinetic constant due to the "non-ideal" reactor: from 0.0284 to 0.0158 min-1 and from 0.0143 to 0.00825 min-1 with [pHBA] = 50 mg L-1 and 75 mg L-1, respectively. This work shows that photocatalytic reactors with UV-A LEDs can advantageously replace conventional UV mercury lamps based reactors in the photodegradation of phenolic compounds.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Catálisis , Cinética , Titanio , Rayos Ultravioleta
16.
Microsc Microanal ; 25(3): 798-809, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30919801

RESUMEN

The adsorption of intact liposomes on surfaces is of great importance for the development of sensors and drug delivery systems and, also, strongly dependent on the surface roughness where the liposomes are adsorbed. In this paper, we analyzed, by using atomic force microscopy in liquid, the evolution of the morphology of gold surfaces and of poly(allylamine hydrochloride) (PAH) surfaces with different roughness during the adsorption of liposomes prepared with the synthetic phospholipid 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]. Our results reveal the following. On smooth surfaces of Au only and Au with PAH, the liposomes open and deploy on the substrate, creating a supported-lipid bilayer, with the opening process being faster on the Au/PAH surface. On rough substrates of Au coated with polyelectrolyte multilayers, the liposomes were adsorbed intact on the surface. This was corroborated by power spectral density analysis that demonstrates the presence of superstructures with an average lateral size of 43 and 87 nm, in accordance with two and four times the mean liposome hydrodynamic diameter of about 21 nm. In addition, this work presents an adequate and effective methodology for analysis of adsorption phenomena of liposomes on rough surfaces.


Asunto(s)
Oro/química , Liposomas/química , Microscopía de Fuerza Atómica/métodos , Fosfatidilgliceroles/química , Adsorción , Sistemas de Liberación de Medicamentos , Fractales , Cinética , Membrana Dobles de Lípidos , Modelos Estructurales , Estructura Molecular , Poliaminas/química , Propiedades de Superficie
17.
Angew Chem Int Ed Engl ; 58(4): 1013-1018, 2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30481405

RESUMEN

Dps proteins (DNA-binding protein from starved cells) are hollow-sphere-shaped, dodecameric enzymes found in bacteria and archaeal species. They can oxidize ferrous iron in a controlled manner using hydrogen peroxide or molecular oxygen as co-substrate, and most of them confer physical protection through DNA binding. Oxidized iron is stored, as a mineral core, in a central cavity. Direct evidence is now provided that, furthermore, Dps proteins containing small mineral cores can oxidize and mineralize toxic ferrous ions in anaerobic conditions and in the absence of any additional aqueous oxidant co-substrate. Dps proteins containing cores of 24 irons per dodecamer can oxidize about 5 ferrous irons per dodecamer, with that number approximately doubling for protein particles containing in average 96 irons per protein. This additional activity carries importance as it can be a detoxification mechanism present during anaerobic or oxygen-limited growth conditions.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Ferritinas/química , Compuestos Ferrosos/química , Marinobacter/química , Sitios de Unión , Modelos Moleculares , Oxidación-Reducción
18.
J Synchrotron Radiat ; 25(Pt 5): 1291-1316, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30179168

RESUMEN

The MAX IV 3 GeV electron storage ring in Lund, Sweden, is the first of a new generation of light sources to make use of the multibend-achromat lattice (MBA) to achieve ultralow emitance and hence ultrahigh brightness and transverse coherence. The conceptual basis of the MAX IV 3 GeV ring project combines a robust lattice design with a number of innovative engineering choices: compact, multifunctional magnet blocks, narrow low-conductance NEG-coated copper vacuum chambers and a 100 MHz radio-frequency system with passively operated third-harmonic cavities for bunch lengthening. In this paper, commissioning and first-year operational results of the MAX IV 3 GeV ring are presented, highlighting those aspects that are believed to be most relevant for future MBA-based storage rings. The commissioning experience of the MAX IV 3 GeV ring offers in this way an opportunity for validation of concepts that are likely to be essential ingredients of future diffraction-limited light sources.

20.
Molecules ; 21(5)2016 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-27196886

RESUMEN

Different lanthanide (Ln)-doped cerium oxides (Ce0.5Ln0.5O1.75, where Ln: Gd, La, Pr, Nd, Sm) were loaded with Cu (20 wt. %) and used as catalysts for the oxidation of ethyl acetate (EtOAc), a common volatile organic compound (VOC). For comparison, both Cu-free (Ce-Ln) and supported Cu (Cu/Ce-Ln) samples were characterized by N2 adsorption at -196 °C, scanning/transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and temperature programmed reduction in H2. The following activity sequence, in terms of EtOAc conversion, was found for bare supports: CeO2 ≈ Ce0.5Pr0.5O1.75 > Ce0.5Sm0.5O1.75 > Ce0.5Gd0.5O1.75 > Ce0.5Nd0.5O1.75 > Ce0.5La0.5O1.75. Cu addition improved the catalytic performance, without affecting the activity order. The best catalytic performance was obtained for Cu/CeO2 and Cu/Ce0.5Pr0.5O1.75 samples, both achieving complete EtOAc conversion below ca. 290 °C. A strong correlation was revealed between the catalytic performance and the redox properties of the samples, in terms of reducibility and lattice oxygen availability. Νo particular correlation between the VOC oxidation performance and textural characteristics was found. The obtained results can be explained in terms of a Mars-van Krevelen type redox mechanism involving the participation of weakly bound (easily reduced) lattice oxygen and its consequent replenishment by gas phase oxygen.


Asunto(s)
Acetatos/química , Catálisis , Cerio/química , Compuestos Orgánicos Volátiles/química , Adsorción , Cobre/química , Metales de Tierras Raras/química , Oxígeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA