Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37110519

RESUMEN

The probiotic features of Lactiplantibacillus (L.) pentosus and L. paraplantarum strains, endogenous in Cobrançosa table olives from northeast Portugal, were assessed in terms of functional properties and health benefits. Fourteen lactic acid bacteria strains were compared with Lacticaseibacillus casei from a commercial brand of probiotic yoghurt and L. pentosus B281 from Greek probiotic table olives, in attempts to select strains with higher probiotic performances than those references. For functional properties, the i53 and i106 strains, respectively, exhibited: 22.2 ± 2.2% and 23.0 ± 2.2% for Caco-2 cell adhesion capacity; 21.6 ± 7.8% and 21.5 ± 1.4% for hydrophobicity; 93.0 ± 3.0% and 88.5 ± 4.5% for autoaggregation ability by 24 h of incubation; and ability to co-aggregate with selected pathogens-from 29 to 40% to Gram+ (e.g., Staphylococcus aureus ATCC 25923 and Enterococcus faecalis ATCC 29212); and from 16 to 44% for Gram- (e.g., Escherichia coli ATCC 25922 and Salmonella enteritidis ATCC 25928). The strains proved to be resistant (i.e., halo zone ≤14 mm) to some antibiotics (e.g., vancomycin, ofloxacin, and streptomycin), but susceptible (i.e., halo zone ≥ 20 mm) to others (e.g., ampicillin and cephalothin). The strains exhibited health-beneficial enzymatic activity (such as acid phosphatase and naphthol-AS-BI-phosphohydrolase), but not health-harmful enzymatic activity (such as ß-glucuronidase and N-acetyl-ß-glucosaminidase). Additionally, the antioxidant activity and cholesterol assimilation features, respectively, of the strains were 19.6 ± 2.8% and 77.5 ± 0.5% for i53, and 19.6 ± 1.8% and 72.2 ± 0.9% for i106. This study indicated that the addition of L. pentosus strains i53 and/or i106 to Cobrançosa table olives is likely to enhance the added value of the final product, in view of the associated potential benefits upon human health.


Asunto(s)
Lactobacillales , Olea , Probióticos , Humanos , Olea/microbiología , Células CACO-2 , Fermentación , Escherichia coli
2.
J Appl Microbiol ; 132(4): 2844-2858, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34865282

RESUMEN

AIM OF THIS STUDY: The major aim of this work was to consistently optimize the production of biomass of the dinoflagellate Karlodinium veneficum and evaluate its extracts biotechnological potential application towards food, nutraceutical or/and pharmaceutical industries. METHODS AND RESULTS: A successful approach of biomass production of K. veneficum CCMP 2936 was optimized along with the chemical characterization of its metabolite profile. Several temperatures (12, 16, 20, 25, 30°C), L1 nutrient concentrations (0.5×, 2×, 2.5×, 3×) and NaCl concentrations (20, 25, 30, 40 g L-1 ) were tested. The growth rate was maximum at 16°C, 2× nutrient concentration and 40 g L-1 of NaCl; hence, these conditions were chosen for bulk production of biomass. Methanolic extracts were prepared, and pigments, lipids and phenolic compounds were assessed; complemented by antioxidant and anti-inflammatory capacities, and cytotoxicity. Fucoxanthin and derivatives accounted for 0.06% of dry weight, and up to 60% (w/w) of all quantified metabolites were lipids. Said extracts displayed high antioxidant capacity, as towards assessed via the NO•- and ABTS•+ assays (IC50  = 109.09 ± 6.73 and 266.46 ± 2.25 µgE  ml-1 , respectively), unlike observed via the O2 •- assay (IC25 reaching 56.06 ± 5.56 µgE  ml-1 ). No signs of cytotoxicity were observed. CONCLUSIONS: Karlodinium veneficum biomass production was consistently optimized in terms of temperature, L1 nutrient concentrations and NaCl concentration. In addition, this strain appears promising for eventual biotechnological exploitation. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides fundamental insights about the growth and potential of value-added compounds of dinoflagellate K. veneficum. Dinoflagellates, as K. veneficum are poorly studied regarding its biomass production and added-value compounds for potential biotechnological exploitation. These organisms are difficult to maintain and grow in the laboratory. Thus, any fundamental contribution is relevant to share with the scientific community.


Asunto(s)
Dinoflagelados , Biomasa , Biotecnología
3.
Mar Drugs ; 19(11)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34822494

RESUMEN

Bioactive lipidic compounds of microalgae, such as polyunsaturated fatty acids (PUFA) and carotenoids, can avoid or treat oxidation-associated conditions and diseases like inflammation or cancer. This study aimed to assess the bioactive potential of lipidic extracts obtained from Gloeothece sp.-using Generally Recognized as Safe (GRAS) solvents like ethanol, acetone, hexane:isopropanol (3:2) (HI) and ethyl lactate. The bioactive potential of extracts was assessed in terms of antioxidant (ABTS•+, DPPH•, •NO and O2•assays), anti-inflammatory (HRBC membrane stabilization and Cox-2 screening assay), and antitumor capacity (death by TUNEL, and anti-proliferative by BrdU incorporation assay in AGS cancer cells); while its composition was characterized in terms of carotenoids and fatty acids, by HPLC-DAD and GC-FID methods, respectively. Results revealed a chemopreventive potential of the HI extract owing to its ability to: (I) scavenge -NO• radical (IC50, 1258 ± 0.353 µg·mL-1); (II) inhibit 50% of COX-2 expression at 130.2 ± 7.4 µg·mL-1; (III) protect 61.6 ± 9.2% of lysosomes from heat damage, and (IV) induce AGS cell death by 4.2-fold and avoid its proliferation up to 40% in a concentration of 23.2 ± 1.9 µg·mL-1. Hence, Gloeothece sp. extracts, namely HI, were revealed to have the potential to be used for nutraceutical purposes.


Asunto(s)
Cianobacterias , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Organismos Acuáticos , Compuestos de Bifenilo , Línea Celular Tumoral , Humanos , Concentración 50 Inhibidora , Picratos
4.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669209

RESUMEN

Nisin Z, an amphipathic peptide, with a significant antibacterial activity against Gram-positive bacteria and low toxicity in humans, has been studied for food preservation applications. Thus far, very little research has been done to explore its potential in biomedicine. Here, we report the modification of sodium alginate (SA) and gelatin (GN) blended microfibers, produced via the wet-spinning technique, with Nisin Z, with the purpose of eradicating Staphylococcus aureus-induced infections. Wet-spun SAGN microfibers were successfully produced at a 70/30% v/v of SA (2 wt%)/GN (1 wt%) polymer ratio by extrusion within a calcium chloride (CaCl2) coagulation bath. Modifications to the biodegradable fibers' chemical stability and structure were then introduced via crosslinking with CaCl2 and glutaraldehyde (SAGNCL). Regardless of the chemical modification employed, all microfibers were labelled as homogeneous both in size (≈246.79 µm) and shape (cylindrical and defect-free). SA-free microfibers, with an increased surface area for peptide immobilization, originated from the action of phosphate buffer saline solution on SAGN fibers, were also produced (GNCL). Their durability in physiological conditions (simulated body fluid) was, however, compromised very early in the experiment (day 1 and 3, with and without Nisin Z, respectively). Only the crosslinked SAGNCL fibers remained intact for the 28 day-testing period. Their thermal resilience in comparison with the unmodified and SA-free fibers was also demonstrated. Nisin Z was functionalized onto the unmodified and chemically altered fibers at an average concentration of 178 µg/mL. Nisin Z did not impact on the fiber's morphology nor on their chemical/thermal stability. However, the peptide improved the SA fibers (control) structural integrity, guaranteeing its stability for longer, in physiological conditions. Its main effect was detected on the time-kill kinetics of the bacteria S. aureus. SAGNCL and GNCL loaded with Nisin Z were capable of progressively eliminating the bacteria, reaching an inhibition superior to 99% after 24 h of culture. The peptide-modified SA and SAGN were not as effective, losing their antimicrobial action after 6 h of incubation. Bacteria elimination was consistent with the release kinetics of Nisin Z from the fibers. In general, data revealed the increased potential and durable effect of Nisin Z (significantly superior to its free, unloaded form) against S. aureus-induced infections, while loaded onto prospective biomedical wet-spun scaffolds.


Asunto(s)
Alginatos/química , Antibacterianos/química , Antibacterianos/farmacología , Reactivos de Enlaces Cruzados/química , Gelatina/química , Nisina/análogos & derivados , Staphylococcus aureus/efectos de los fármacos , Materiales Biocompatibles/química , Plásticos Biodegradables/química , Biopolímeros/química , Cloruro de Calcio/química , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Glutaral/química , Cinética , Pruebas de Sensibilidad Microbiana , Nisina/química , Nisina/farmacología , Porosidad , Solubilidad , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Agua/química
5.
Molecules ; 26(3)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530628

RESUMEN

One of the main goals of Mankind is to ensure food system sustainability-including management of land, soil, water, and biodiversity. Microalgae accordingly appear as an innovative and scalable alternative source in view of the richness of their chemical profiles. In what concerns lipids in particular, microalgae can synthesize and accumulate significant amounts of fatty acids, a great fraction of which are polyunsaturated; this makes them excellent candidates within the framework of production and exploitation of lipids by various industrial and health sectors, either as bulk products or fine chemicals. Conventional lipid extraction methodologies require previous dehydration of microalgal biomass, which hampers economic feasibility due to the high energy demands thereof. Therefore, extraction of lipids directly from wet biomass would be a plus in this endeavor. Supporting processes and methodologies are still limited, and most approaches are empirical in nature-so a deeper mechanistic elucidation is a must, in order to facilitate rational optimization of the extraction processes. Besides circumventing the current high energy demands by dehydration, an ideal extraction method should be selective, sustainable, efficient, harmless, and feasible for upscale to industrial level. This review presents and discusses several pretreatments incurred in lipid extraction from wet microalga biomass, namely recent developments and integrated processes. Unfortunately, most such developments have been proven at bench-scale only-so demonstration in large facilities is still needed to confirm whether they can turn into competitive alternatives.


Asunto(s)
Microalgas/química , Microalgas/crecimiento & desarrollo , Aceites/aislamiento & purificación , Biocombustibles , Biomasa , Secuestro de Carbono , Purificación del Agua
6.
Environ Monit Assess ; 193(8): 480, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34240260

RESUMEN

The study evaluates Hermetia illucens larvae's ability to decrease direct methane emissions and nutrients from cattle and swine manure. Hermetia illucens larvae were put into fresh cattle and swine manure, and the same conditions, without larvae, for the control treatment were established. The methane emissions were measured until the first prepupae appeared. The methane emissions from the bioconversion of animal manure by Hermetia illucens larvae were up to 86% lower than in the control treatments (conventional storage). The cumulative methane emissions from cattle and swine manure bioconversion were 41.4 ± 10.5 mg CH4 kg-1 and 134.2 ± 17.3 mg CH4 kg-1, respectively. Moreover, Hermetia illucens larvae could reduce 32% of dry matter, 53% nitrogen, 14% phosphorus, and 42% carbon in swine manure. Meanwhile, in cattle manure, reductions of 17% of dry matter, 5% of nitrogen, 11% of phosphorus, and 15% of carbon and pH reductions in both swine and cattle manure were found. Thus, the production of larvae was higher in swine manure than cattle manure. Furthermore, the larvae frass from swine manure was appropriate for agricultural use, unlike the larvae frass from cattle manure requiring further processing. These results reveal the ability of Hermetia illucens larvae to mitigate methane emissions from animal manure and show it to be a promising technology for manure treatment, with great potential to promote a circular economy in the livestock sector.


Asunto(s)
Dípteros , Estiércol , Animales , Bovinos , Monitoreo del Ambiente , Larva , Metano , Porcinos
7.
J Food Sci Technol ; 54(13): 4387-4396, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29184245

RESUMEN

This work attempted to assess the effect of high intensity ultrasound (HIUS) upon development of bio-based delivery systems, from ß-lactoglobulin (ß-Lg) gelled microparticles, for encapsulation of a bioactive peptide concentrate (PepC). Solutions of 150 g L-1 of commercial ß-Lg and 30 g L-1 PepC, at various pH values (3.0, 4.0 and 5.5), were accordingly subjected to gelation for 30 min using a dry bath kept at 80 °C. The gelled systems were then exposed to HIUS at 0-4 °C, and the effect of processing time (2.5-20.0 min) was ascertained. Laser light scattering and confocal microscopy were used to characterize the particle size distribution, prior to and immediately after HIUS treatment. Gels obtained at pH 5.5 and 4.0 were harder than those obtained at pH 3.0. Ultrasound treatment of gels produced an important reduction in particle mean diameter as sonication time elapsed. Confocal microscopy indicated that application of HIUS led to almost round and monodispersed particles, at both pH 5.5 and 4.0. The peptide encapsulation efficiency was assessed by chromatography and accompanied by assay for bioactivity, after precipitation of the encapsulated material and analysis of the soluble peptides therein.

8.
Biomater Adv ; 162: 213931, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38924805

RESUMEN

Microbial colonization and development of infections in wounds is a sign of chronicity. The prevailing approach to manage and treat these wounds involves dressings. However, these often fail in effectively addressing infections, as they struggle to both absorb exudates and maintain optimal local moisture. The system here presented was conceptualized with a three-layer design: the outer layer made of a fibrous polycaprolactone (PCL) film, to act as a barrier for preventing microorganisms and impurities from reaching the wound; the intermediate layer formed of a sodium alginate (SA) hydrogel loaded with ampicillin (Amp) for fighting infections; and the inner layer comprised of a fibrous film of PCL and polyethylene glycol (PEG) for facilitating cell recognition and preventing wound adhesion. Thermal evaluations, degradation, wettability and release behavior testing confirmed the system resistance overtime. The sandwich demonstrated the capability for absorbing exudates (≈70 %) and exhibited a controlled release of Amp for up to 24 h. Antimicrobial testing was performed against Staphylococcus aureus and Escherichia coli, as representatives of Gram-positive and Gram-negative bacteria: >99 % elimination of bacteria. Cell cytotoxicity assessments showed high cytocompatibility levels, confirming the safety of the proposed sandwich system. Adhesion assays confirmed the system ease of detaching without mechanical effort (0.37 N). Data established the efficiency of the sandwich-like system, suggesting promising applications in infected wound care.


Asunto(s)
Alginatos , Antibacterianos , Escherichia coli , Poliésteres , Staphylococcus aureus , Infección de Heridas , Alginatos/química , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química , Antibacterianos/administración & dosificación , Poliésteres/química , Ampicilina/farmacología , Ampicilina/uso terapéutico , Ampicilina/química , Humanos , Hidrogeles/química , Polietilenglicoles/química , Animales , Vendajes , Pruebas de Sensibilidad Microbiana , Ratones , Cicatrización de Heridas/efectos de los fármacos
9.
J Sci Food Agric ; 93(6): 1458-65, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23400948

RESUMEN

BACKGROUND: Probiotic whey cheeses have been produced for several years. It is recognized that several bacterium-mediated metabolic activities contribute differently to the final sensory and nutritional profiles of dairy products. Hence the metabolic activity of probiotic strains in a whey cheese and their contribution to the bioactivity of such matrices were investigated here, including in particular Bifidobacterium animalis, Lactobacillus acidophilus and Lactobacillus casei. RESULTS: Both L. casei and B. animalis produce lactic and acetic acids, whereas L. acidophilus produce mainly lactic acid; these metabolites may be considered bioprotection factors. Water-soluble extracts (WSE) obtained from these cheese matrices were subjected to ultrafiltration through a 3 kDa cut-off membrane, and the eluted peptides were resolved by high-performance liquid chromatography. Different qualitative and quantitative profiles were obtained, depending on the strain. WSE were further assayed for their ability to inhibit angiotensin-converting enzyme; the <3 kDa fraction exhibited higher activities in the case of L. casei and B. animalis than the control and L. acidophilus. CONCLUSION: Whey cheeses with higher nutritional value were those inoculated with L. casei.


Asunto(s)
Ácidos/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Bacterias/metabolismo , Queso/microbiología , Proteínas de la Leche/farmacología , Péptidos/farmacología , Probióticos/metabolismo , Ácido Acético/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Bifidobacterium/metabolismo , Queso/análisis , Dieta , Microbiología de Alimentos , Humanos , Ácido Láctico/metabolismo , Lactobacillus acidophilus/metabolismo , Lacticaseibacillus casei/metabolismo , Proteínas de la Leche/metabolismo , Peso Molecular , Péptidos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Proteína de Suero de Leche
10.
Life (Basel) ; 13(1)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36676136

RESUMEN

Synechocystis salina is a cyanobacterium that has biotechnological potential thanks to its ability to synthesize several bioactive compounds of interest. Therefore, this study aimed to find optimal conditions, in terms of temperature (15-25 °C), pH (6.5-9.5), and NaCl concentration (10-40 g·L-1), using as objective functions the productivities of biomass, total carotenoids, total PBPs, phycocyanin (PC), allophycocyanin (APC), phycoerythrin (PE), and antioxidants (AOXs) capacity of Synechocystis salina (S. salina) strain LEGE 06155, based in factorial design resorting to Box-Behnken. The model predicted higher biomass productivities under a temperature of 25 °C, a pH of 7.5, and low NaCl concentrations (10 g·L-1). Maximum productivities in terms of bioactive compounds were attained at lower NaCl concentrations (10 g·L-1) (except for PE), with the best temperature and pH in terms of carotenoids and total and individual PBPs ranging from 23-25 °C to 7.5-9.5, respectively. PE was the only pigment for which the best productivity was reached at a lower temperature (15 °C) and pH (6.5) and a higher concentration of NaCl (≈25 g·L-1). AOX productivities, determined in both ethanolic and aqueous extracts, were positively influenced by lower temperatures (15-19 °C) and higher salinities (≈15-25 g·L-1). However, ethanolic AOXs were better recovered at a higher pH (pH ≈ 9.5), while aqueous AOXs were favored by a pH of 8. The model showed that biomass production can be enhanced by 175% (compared to non-optimized conditions), total carotenoids by 91%, PC by 13%, APC by 50%, PE by 130%, and total PBPs by 39%; for AOX productivities, only water extracts exhibited a (marginal) improvement of 1.4%. This study provided insightful information for the eventual upgrading of Synechocystis salina biomass in the biotechnological market.

11.
Bioengineering (Basel) ; 9(7)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35877382

RESUMEN

Cyanobacteria are microorganisms that are well-adapted to sudden changes in their environment, namely to light conditions. This has allowed them to develop mechanisms for photoprotection, which encompass alteration in pigment composition. Therefore, light modulation appears to be a suitable strategy to enhance the synthesis of specific pigments (e.g., phycocyanin) with commercial interest, in addition to conveying a more fundamental perspective on the mechanisms of acclimatization of cyanobacterium species. In this study, Synechocystis salina was accordingly cultivated in two light phase stages: (i) white LED, and (ii) shift to distinct light treatments, including white, green, and red LEDs. The type of LED lighting was combined with two intensities (50 and 150 µmolphotons·m-2·s-1). The effects on biomass production, photosynthetic efficiency, chlorophyll a (chl a) content, total carotenoids (and profile thereof), and phycobiliproteins (including phycocyanin, allophycocyanin, and phycoerythrin) were assessed. White light (under high intensity) led to higher biomass production, growth, and productivity; this is consistent with higher photosynthetic efficiency. However, chl a underwent a deeper impact under green light (high intensity); total carotenoids were influenced by white light (high intensity); whilst red treatment had a higher effect upon total and individual phycobiliproteins. Enhanced PC productivities were found under modulation with red light (low intensities), and could be achieved 7 days earlier than in white LED (over 22 days); this finding is quite interesting from a sustainability and economic point of view. Light modulation accordingly appears to be a useful tool for supplementary studies pertaining to optimization of pigment production with biotechnological interest.

12.
Foods ; 11(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36230126

RESUMEN

Current market trends point at increasing demand for functional foods, namely those carrying probiotics. In the case of table olives, presence of probiotics would convey a competitive advantage to Mediterranean-based diets, already established for their cultural heritage and gastronomic character. This work assessed the safety and resistance to gastrointestinal digestion of 19 native LAB strains from Cobrançosa table olives. Strains were identified via molecular sequencing (4 fingerprints/10 strains for Lactiplantibacillus pentosus, and 2 fingerprints/9 strains for L. paraplantarum), and exposed to simulated gastrointestinal fluids, as per the INFOGEST in vitro protocol with modifications. None of those strains proved dangerous for human consumption. Survivability to the gastrointestinal resistance test ranged from 29% to 70%, with strain-dependent variability. L. paraplantarum i18, i27, and i102, and L. pentosus i10 and i11 exhibited statistically lower survival rates (29−35%) than probiotic the Greek table olive reference strain L. pentosus B281 (53%). Among the other strains, L. paraplantarum i101 and L. pentosus i53 and i106 showed the highest survival rates but were not significantly different from the strain of Lacticaseibacillus casei isolated from commercial probiotic yoghurt (65−70%). In vitro results proved that strains retrieved from fermenting cultivar Cobrançosa possess the potential to be claimed as probiotics­thus deserving further attention toward the development of a specific starter culture.

13.
Life (Basel) ; 12(11)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36431036

RESUMEN

Microalgae are known producers of antioxidant and anti-inflammatory compounds, making them natural alternatives to be used as food and feed functional ingredients. This study aimed to valorise biomass and exploit new applications and commercial value for four commercially available microalgae: Isochrysis galbana, Nannochloropsis sp., Tetraselmis sp., and Phaeodactylum tricornutum. For that, five extracts were obtained: acetone (A), ethanol (E), water (W), ethanol:water (EW). The antioxidant capacity (ABTS•+/DPPH•/•NO/O2•-/ORAC-FL) and anti-inflammatory capacity (HBRC/COX-2) of the extracts were screened. The general biochemical composition (carbohydrates, soluble proteins, and lipids) and the main groups of bioactive compounds (carotenoids, phenolic compounds, and peptides) of extracts were quantified. The results of antioxidant assays revealed the potential of some microalgae extracts: in ABTS•+, Nannochloropsis sp. E and Tetraselmis sp. A, E, and P; in DPPH•, Tetraselmis sp. A and E; in •NO, P. tricornutum E and EW; in O2•-, Tetraselmis sp. W; and in ORAC-FL, I. galbana EW and P. tricornutum EW. Concerning anti-inflammatory capacity, P. tricornutum EW and Tetraselmis sp. W showed a promising HBRC protective effect and COX-2 inhibition. Hence, Tetraselmis sp. and P. tricornutum extracts seem to have potential to be incorporated as feed and food functional ingredients and preservatives.

14.
Pharmaceutics ; 13(2)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540524

RESUMEN

Chronic wounds (CW) create numerous entryways for pathogen invasion and prosperity, further damaging host tissue and hindering its remodeling and repair. Essential oils (EOs) exert quick and efficient antimicrobial (AM) action, unlikely to induce bacterial resistance. Cinnamon leaf and clove oils (CLO and CO) display strong AM activity, namely against Staphylococcus aureus and Pseudomonas aeruginosa. Chitosan (CS) is a natural and biodegradable cationic polysaccharide, also widely known for its AM features. CS and poly (vinyl alcohol) (PVA) films were prepared (ratio 30/70 w/w; 9 wt%) by the solvent casting and phase inversion method. The film's thermal stability and chemical composition data reinforced polymer blending and EO entrapment. Films were supplemented with 1 and 10 wt% of EO in relation to total polymeric mass. The film thickness and degree of swelling (DS) tended to increase with EO content, particularly with 10 wt % CLO (* p < 0.05). UV-visible absorbance scans in the 250-320 cm-1 region confirmed the successful uptake of CLO and CO into CS/PVA films, particularly with films loaded with 10 wt% EO that contained 5.30/5.32 times more CLO/CO than films supplemented with 1 wt% EO. AM testing revealed that CS films alone were effective against both bacteria and capable of eradicating all P. aeruginosa within the hour (*** p < 0.001). Still, loaded CS/PVA films showed significantly improved AM traits in relation to unloaded films within 2 h of contact. This study is a first proof of concept that CLO and CO can be dispersed into CS/PVA films and show bactericidal effects, particularly against S. aureus, this way paving the way for efficient CW therapeutics.

15.
Biomolecules ; 10(1)2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963279

RESUMEN

In the last ten years, environmental consciousness has increased worldwide, leading to the development of eco-friendly materials to replace synthetic ones. Natural fibers are extracted from renewable resources at low cost. Their combination with synthetic polymers as reinforcement materials has been an important step forward in that direction. The sustainability and excellent physical and biological (e.g., biocompatibility, antimicrobial activity) properties of these biocomposites have extended their application to the biomedical field. This paper offers a detailed overview of the extraction and separation processes applied to natural fibers and their posterior chemical and physical modifications for biocomposite fabrication. Because of the requirements for biomedical device production, specialized biomolecules are currently being incorporated onto these biocomposites. From antibiotics to peptides and plant extracts, to name a few, this review explores their impact on the final biocomposite product, in light of their individual or combined effect, and analyzes the most recurrent strategies for biomolecule immobilization.


Asunto(s)
Materiales Biocompatibles/química , Productos Biológicos/química , Polímeros/química , Animales , Antibacterianos/química , Humanos , Proteínas Inmovilizadas/química , Nanoestructuras/química , Péptidos/química , Plantas/química
16.
Antibiotics (Basel) ; 9(6)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32526972

RESUMEN

The increased resistance of bacteria against conventional pharmaceutical solutions, the antibiotics, has raised serious health concerns. This has stimulated interest in the development of bio-based therapeutics with limited resistance, namely, essential oils (EOs) or antimicrobial peptides (AMPs). This study envisaged the evaluation of the antimicrobial efficacy of selected biomolecules, namely LL37, pexiganan, tea tree oil (TTO), cinnamon leaf oil (CLO) and niaouli oil (NO), against four bacteria commonly associated to nosocomial infections: Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa. The antibiotic vancomycin and silver nanoparticles (AgNPs) were used as control compounds for comparison purposes. The biomolecules were initially screened for their antibacterial efficacy using the agar-diffusion test, followed by the determination of minimal inhibitory concentrations (MICs), kill-time kinetics and the evaluation of the cell morphology upon 24 h exposure. All agents were effective against the selected bacteria. Interestingly, the AgNPs required a higher concentration (4000-1250 µg/mL) to induce the same effects as the AMPs (500-7.8 µg/mL) or EOs (365.2-19.7 µg/mL). Pexiganan and CLO were the most effective biomolecules, requiring lower concentrations to kill both Gram-positive and Gram-negative bacteria (62.5-7.8 µg/mL and 39.3-19.7 µg/mL, respectively), within a short period of time (averaging 2 h 15 min for all bacteria). Most biomolecules apparently disrupted the bacteria membrane stability due to the observed cell morphology deformation and by effecting on the intracellular space. AMPs were observed to induce morphological deformations and cellular content release, while EOs were seen to split and completely envelope bacteria. Data unraveled more of the potential of these new biomolecules as replacements for the conventional antibiotics and allowed us to take a step forward in the understanding of their mechanisms of action against infection-related bacteria.

17.
Artículo en Inglés | MEDLINE | ID: mdl-30279362

RESUMEN

A primary lead smelter operated in Santo Amaro City in Brazil from 1960 to 1993, leaving approximately 500,000 tons of industrial dross containing 2⁻3% of lead and other toxic elements that contaminated the industry grounds and the urban environment. This study aimed to present the local residents' perception towards soil contamination by the smelter. In a cross-sectional study, 208 residents from randomly selected households were interviewed about dross hazards and proposals for its management. A city map depicts the distribution and concentration of lead, cadmium, arsenic, zinc, nickel, and antimony, measured in the soil of the 39 households with visible smelter dross. Only one site complies with the soil quality reference values; 27 (69.2%) call for preventive measures, and 11 (28.2%) require intervention. The smelter dross continues widely spread over the city. Thirty (76.9%) out of the 39 residents were able to recognize the smelter dross on household surroundings. However, this ability was not associated with the concentrations of toxic elements in the soil of their residences and surroundings. The smelter and the local Prefecture were most frequently held liable for taking soil cleanup actions. The most frequently (38.0%) cited solution for managing the dross found in the households was "to provide the residents with information about health risks related to the dross".


Asunto(s)
Contaminación Ambiental , Plomo/análisis , Opinión Pública , Contaminantes del Suelo/análisis , Arsénico , Brasil , Cadmio/análisis , Estudios Transversales , Humanos , Industrias , Administración de la Seguridad , Suelo , Zinc/análisis
18.
Biol Open ; 7(9)2018 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-30127097

RESUMEN

The current study evaluated the microalgae replacement by dry macroalgae (Ulva rigida) in the reproductive success and biochemical composition of the Pacific oyster (Crassostrea gigas) during broodstock conditioning. Five nutritional regimes were tested: 100% macroalgae (diet 1), 50% macroalgae+50% microalgae (diet 2), 25% macroalgae+75% microalgae (diet 3) and 100% microalgae (diet 4). An unfed group was used as a negative control. The microalgae blend was composed of 33% Isochrysis galbana and 67% diatoms (75% Skeletonema costatum+25% Chaetoceros calcitrans). Gonadal maturation was reflected in the physiological condition of the individuals. All treatments, except diet 1, showed an increase in condition index and were fully matured at the end of the trial, with the best physiological condition observed in oysters fed diet 3 and diet 4. Protein and total lipid content increased during the conditioning period, whereas glycogen content decreased. Oysters conditioned with diet 3 had higher protein and total lipid content and lower glycogen content than the other treatments. In addition, diet 3 showed the highest percentage of viable veliger larvae. The current study demonstrated that it is possible to replace 25% of microalgae with macroalgae in the broodstock conditioning, minimizing the operative cost in bivalve hatcheries.This article has an associated First Person interview with the first author of the paper.

19.
Food Funct ; 7(11): 4597-4604, 2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27747356

RESUMEN

The increase of hen egg consumption demands profitable applications for eggshells, including their membranes, in order to minimize environmental and public health problems that could result from their accumulation. This work presents an innovative application for eggshell membranes to obtain an added-value food ingredient that combines maximized ACE-inhibitory and antioxidant activities. Firstly, the use of acetic acid 5% (v/v); and 3-mercaptopropionic acid 1.25 M enabled 63% recovery of eggshell membrane proteins. Secondly, the extracted proteins were hydrolysed by alcalase from Bacillus licheniformis, viscozyme L and protease from Bacillus amyloliquefaciens. Hydrolysis conditions were optimized using response surface methodology experimental design. The ACE-inhibitory activity (IC50) was 34.5 ± 2.1 µg mL-1, 63.0 ± 4.2 µg mL-1 and 43.0 ± 8.5 µg mL-1 for each enzyme, respectively, and the antioxidant activity was ca. 4.0 µmoltrolox equivalent mg-1hydrolysed protein. The combination of both bioactive properties is of potential interest to control cardiovascular diseases.


Asunto(s)
Cáscara de Huevo , Membranas/química , Péptidos/química , Animales , Bacillus amyloliquefaciens/enzimología , Bacillus licheniformis/enzimología , Hidrólisis , Modelos Químicos , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Péptido Hidrolasas/metabolismo , Subtilisinas/metabolismo , Propiedades de Superficie
20.
Sci Total Environ ; 452-453: 314-20, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23528306

RESUMEN

The assessment of damage to indoor cultural heritage, in particular by pollutants, is nowadays a major and growing concern for curators and conservators. Nevertheless, although many museums have been widely investigated in Europe, the effects of particulate matter and gaseous pollutants in museums under tropical and subtropical climates and with different economic realities are still unclear. An important portion of the world's cultural heritage is currently in tropical countries where both human and financial resources for preserving museum collections are limited. Hence, our aim is to assess the damage that can be caused to the artwork by pollution in hot and humid environments, where air quality and microclimatic condition differences can cause deterioration. As a case study, particulate matter as well as gases were collected at the Oscar Niemeyer Museum (MON) in Curitiba, Brazil, where large modern and contemporary works of art are displayed. NO2, SO2, O3, Acetic Acid, Formic Acids and BTEX, in the ambient air, were sampled by means of passive diffusive sampling and their concentrations were determined by IC or GC-MS. The particulate matter was collected in bulk form and analyzed with the use of energy dispersive X-ray fluorescence and aethalometer. The chemical compositions of individual particles were quantitatively elucidated, including low-Z components like C, N and O, as well as higher-Z elements, using automated electron probe microanalysis. The gaseous and particulate matter levels were then compared with the concentrations obtained for the same pollutants in other museums, located in places with different climates, and with some reference values provided by international cultural heritage conservation centers. Results are interpreted separately and as a whole with the specific aim of identifying compounds that could contribute to the chemical reactions taking place on the surfaces of artifacts and which could potentially cause irreversible damage to the artworks.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Museos , Ácido Acético/análisis , Aerosoles/análisis , Aire Acondicionado , Arte , Brasil , Formiatos/análisis , Cromatografía de Gases y Espectrometría de Masas , Humanos , Dióxido de Nitrógeno/análisis , Ozono/análisis , Material Particulado/análisis , Dióxido de Azufre/análisis , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA