Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(24): 13519-13528, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32461373

RESUMEN

Networks of branched actin filaments formed by Arp2/3 complex generate and experience mechanical forces during essential cellular functions, including cell motility and endocytosis. External forces regulate the assembly and architecture of branched actin networks both in vitro and in cells. Considerably less is known about how mechanical forces influence the disassembly of actin filament networks, specifically, the dissociation of branches. We used microfluidics to apply force to branches formed from purified muscle actin and fission yeast Arp2/3 complex and observed debranching events in real time with total internal reflection fluorescence microscopy. Low forces in the range of 0 pN to 2 pN on branches accelerated their dissociation from mother filaments more than two orders of magnitude, from hours to <1 min. Neither force on the mother filament nor thermal fluctuations in mother filament shape influenced debranching. Arp2/3 complex at branch junctions adopts two distinct mechanical states with different sensitivities to force, which we name "young/strong" and "old/weak." The "young/strong" state 1 has adenosine 5'-diphosphate (ADP)-P i bound to Arp2/3 complex. Phosphate release converts Arp2/3 complex into the "old/weak" state 2 with bound ADP, which is 20 times more sensitive to force than state 1. Branches with ADP-Arp2/3 complex are more sensitive to debranching by fission yeast GMF (glia maturation factor) than branches with ADP-P i -Arp2/3 complex. These findings suggest that aging of branch junctions by phosphate release from Arp2/3 complex and mechanical forces contribute to disassembling "old" actin filament branches in cells.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Fosfatos/metabolismo , Actinas/metabolismo , Adenosina Difosfato/metabolismo , Animales , Factor de Maduración de la Glia/metabolismo , Microfluídica , Microscopía Fluorescente , Modelos Biológicos , Unión Proteica , Conejos , Schizosaccharomyces/metabolismo , Estrés Mecánico
2.
J Exp Biol ; 225(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35909333

RESUMEN

It has been proposed that larger individuals within fish species may be more sensitive to global warming, as a result of limitations in their capacity to provide oxygen for aerobic metabolic activities. This could affect size distributions of populations in a warmer world but evidence is lacking. In Nile tilapia Oreochromis niloticus (n=18, mass range 21-313 g), capacity to provide oxygen for aerobic activities (aerobic scope) was independent of mass at an acclimation temperature of 26°C. Tolerance of acute warming, however, declined significantly with mass when evaluated as the critical temperature for fatigue from aerobic swimming (CTSmax). The CTSmax protocol challenges a fish to meet the oxygen demands of constant aerobic exercise while their demands for basal metabolism are accelerated by incremental warming, culminating in fatigue. CTSmax elicited pronounced increases in oxygen uptake in the tilapia but the maximum rates achieved prior to fatigue declined very significantly with mass. Mass-related variation in CTSmax and maximum oxygen uptake rates were positively correlated, which may indicate a causal relationship. When fish populations are faced with acute thermal stress, larger individuals may become constrained in their ability to perform aerobic activities at lower temperatures than smaller conspecifics. This could affect survival and fitness of larger fish in a future world with more frequent and extreme heatwaves, with consequences for population productivity.


Asunto(s)
Cíclidos , Consumo de Oxígeno , Aclimatación , Animales , Fatiga , Oxígeno , Temperatura
3.
J Exp Biol ; 224(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34427663

RESUMEN

When snakes digest large meals, heart rate is accelerated by withdrawal of vagal tone and an increased non-adrenergic-non-cholinergic tone that seems to stem from circulating blood-borne factors exerting positive chronotropic effects. To investigate whether this tonic elevation of heart rate impairs the ability for autonomic regulation of heart during digestion, we characterised heart rate responses to pharmacological manipulation of blood pressure in the snake Boa constrictor through serial injections of sodium nitroprusside and phenylephrine. Both fasting and digesting snakes responded with a robust tachycardia to hypotension induced by sodium nitroprusside, with digesting snakes attaining higher maximal heart rates than fasting snakes. Both fasting and digesting snakes exhibited small reductions of the cardiac chronotropic response to hypertension, induced by injection of phenylephrine. All heart rate changes were abolished by autonomic blockade with the combination of atropine and propranolol. The digesting snakes retained the capacity for compensatory heart rate responses to hypotension, despite their higher resting values, and the upward shift of the barostatic response curve enables snakes to maintain the cardiac limb of barostatic regulation for blood pressure regulation.


Asunto(s)
Boidae , Animales , Atropina/farmacología , Sistema Nervioso Autónomo , Presión Sanguínea , Frecuencia Cardíaca , Nitroprusiato/farmacología , Nervio Vago
4.
Am J Physiol Regul Integr Comp Physiol ; 319(2): R156-R170, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32686959

RESUMEN

Vascular tone in the reptilian pulmonary vasculature is primarily under cholinergic, muscarinic control exerted via the vagus nerve. This control has been ascribed to a sphincter located at the arterial outflow, but we speculated whether the vascular control in the pulmonary artery is more widespread, such that responses to acetylcholine and electrical stimulation, as well as the expression of muscarinic receptors, are prevalent along its length. Working on the South American rattlesnake (Crotalus durissus), we studied four different portions of the pulmonary artery (truncus, proximal, distal, and branches). Acetylcholine elicited robust vasoconstriction in the proximal, distal, and branch portions, but the truncus vasodilated. Electrical field stimulation (EFS) caused contractions in all segments, an effect partially blocked by atropine. We identified all five subtypes of muscarinic receptors (M1-M5). The expression of the M1 receptor was largest in the distal end and branches of the pulmonary artery, whereas expression of the muscarinic M3 receptor was markedly larger in the truncus of the pulmonary artery. Application of the neural tracer 1,1'-dioctadecyl-3,3,3',3'-tetramethylindo-carbocyanine perchlorate (DiI) revealed widespread innervation along the whole pulmonary artery, and retrograde transport of the same tracer indicated two separate locations in the brainstem providing vagal innervation of the pulmonary artery, the medial dorsal motor nucleus of the vagus and a ventro-lateral location, possibly constituting a nucleus ambiguus. These results revealed parasympathetic innervation of a large portion of the pulmonary artery, which is responsible for regulation of vascular conductance in C. durissus, and implied its integration with cardiorespiratory control.


Asunto(s)
Arteria Pulmonar/inervación , Arteria Pulmonar/metabolismo , Receptores Muscarínicos/metabolismo , Arritmia Sinusal Respiratoria/fisiología , Nervio Vago/fisiología , Acetilcolina/farmacología , Animales , Agonistas Colinérgicos/farmacología , Crotalus , Estimulación Eléctrica , Arteria Pulmonar/efectos de los fármacos
5.
J Exp Biol ; 223(Pt 9)2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32381588

RESUMEN

We investigated whether fatigue from sustained aerobic swimming provides a sub-lethal endpoint to define tolerance of acute warming in fishes, as an alternative to loss of equilibrium (LOE) during a critical thermal maximum (CTmax) protocol. Two species were studied, Nile tilapia (Oreochromis niloticus) and pacu (Piaractus mesopotamicus). Each fish underwent an incremental swim test to determine gait transition speed (UGT), where it first engaged the unsteady anaerobic swimming mode that preceded fatigue. After suitable recovery, each fish was exercised at 85% of their own UGT and warmed 1°C every 30 min, to identify the temperature at which they fatigued, denoted as CTswim Fish were also submitted to a standard CTmax, warming at the same rate as CTswim, under static conditions until LOE. All individuals fatigued in CTswim, at a mean temperature approximately 2°C lower than their CTmax Therefore, if exposed to acute warming in the wild, the ability to perform aerobic metabolic work would be constrained at temperatures significantly below those that directly threatened survival. The collapse in performance at CTswim was preceded by a gait transition qualitatively indistinguishable from that during the incremental swim test. This suggests that fatigue in CTswim was linked to an inability to meet the tissue oxygen demands of exercise plus warming. This is consistent with the oxygen and capacity limited thermal tolerance (OCLTT) hypothesis, regarding the mechanism underlying tolerance of warming in fishes. Overall, fatigue at CTswim provides an ecologically relevant sub-lethal threshold that is more sensitive to extreme events than LOE at CTmax.


Asunto(s)
Cíclidos , Peces , Aclimatación , Animales , Humanos , Oxígeno , Natación , Temperatura
6.
Artículo en Inglés | MEDLINE | ID: mdl-31707060

RESUMEN

Using long-term, remote recordings of heart rate (fH) on fully recovered, undisturbed lizards, we identified several components of heart rate variability (HRV) associated with respiratory sinus arrhythmia (RSA): 1.) A peak in the spectral representation of HRV at the frequency range of ventilation. 2.) These cardiorespiratory interactions were shown to be dependent on the parasympathetic arm of the autonomic nervous system. 3.) Vagal preganglionic neurons are located in discrete groups located in the dorsal motor nucleus of the vagus and also, in a ventro-lateral group, homologous to the nucleus ambiguus of mammals. 4.) Myelinated nerve fibers in the cardiac vagus enabling rapid communication between the central nervous system and the heart. Furthermore, the study of the progressive recovery of fH in tegu following anesthesia and instrumentation revealed that 'resting' levels of mean fH and reestablishment of HRV occurred over different time courses. Accordingly, we suggest that, when an experiment is designed to study a physiological variable reliant on autonomic modulation at its normal, resting level, then postsurgical reestablishment of HRV should be considered as the index of full recovery, rather than mean fH.


Asunto(s)
Sistema Nervioso Autónomo , Frecuencia Cardíaca/fisiología , Corazón/anatomía & histología , Corazón/fisiopatología , Lagartos/fisiología , Recuperación de la Función , Nervio Vago/fisiopatología , Anestesia/métodos , Animales , Masculino , Modelos Teóricos , Respiración , Nervio Vago/anatomía & histología
7.
Ecotoxicology ; 29(4): 375-388, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32166694

RESUMEN

Hypoxia and mercury contamination often co-occur in tropical freshwater ecosystems, but the interactive effects of these two stressors on fish populations are poorly known. The effects of mercury (Hg) on recorded changes in the detailed form of the electrocardiogram (ECG) during exposure to progressive hypoxia were investigated in two Neotropical freshwater fish species, matrinxã, Brycon amazonicus and traíra, Hoplias malabaricus. Matrinxã were exposed to a sublethal concentration of 0.1 mg L-1 of HgCl2 in water for 96 h. Traíra were exposed to dietary doses of Hg by being fed over a period of 30 days with juvenile matrinxãs previously exposed to HgCl2, resulting in a dose of 0.45 mg of total Hg per fish, each 96 h. Both species showed a bradycardia in progressive hypoxia. Hg exposure impaired cardiac electrical excitability, leading to first-degree atrioventricular block, plus profound extension of the ventricular action potential (AP) plateau. Moreover, there was the development of cardiac arrhythmias and anomalies such as occasional absence of QRS complexes, extra systoles, negative Q-, R- and S-waves (QRS complex), and T wave inversion, especially in hypoxia below O2 partial pressures (PO2) of 5.3 kPa. Sub-chronic dietary Hg exposure induced intense bradycardia in normoxia in traira, plus lengthening of ventricular AP duration coupled with prolonged QRS intervals. This indicates slower ventricular AP conduction during ventricular depolarization. Overall, the data indicate that both acute waterborne and sub-chronic dietary exposure (trophic level transfer), at sublethal concentrations of mercury, cause damage in electrical stability and rhythm of the heartbeat, leading to myocardial dysfunction, which is further intensified during hypoxia. These changes could lead to impaired cardiac output, with consequences for swimming ability, foraging capacity, and hence growth and/or reproductive performance.


Asunto(s)
Peces/fisiología , Mercurio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Characiformes , Ecosistema , Electrocardiografía , Eutrofización , Agua Dulce , Hipoxia
8.
J Exp Biol ; 222(Pt 9)2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30967516

RESUMEN

ECG recordings were obtained using an implanted telemetry device from the South American rattlesnake, Crotalus durissus, held under stable conditions without restraining cables or interaction with researchers. Mean heart rate (fH) recovered rapidly (<24 h) from anaesthesia and operative procedures. This preceded a more gradual development of heart rate variability (HRV), with instantaneous fH increasing during each lung ventilation cycle. Atropine injection increased mean fH and abolished HRV. Complete autonomic blockade revealed a cholinergic tonus on the heart of 55% and an adrenergic tonus of 37%. Power spectral analysis of HRV identified a peak at the same frequency as ventilation. This correlation was sustained after temperature changes and it was more evident, marked by a more prominent power spectrum peak, when ventilation is less episodic. This HRV component is homologous to that observed in mammals, termed respiratory sinus arrhythmia (RSA). Evidence for instantaneous control of fH indicated rapid conduction of activity in the cardiac efferent nervous supply, as supported by the description of myelinated fibres in the cardiac vagus. Establishment of HRV 10 days after surgical intervention seems a reliable indicator of the re-establishment of control of integrative functions by the autonomic nervous system. We suggest that this criterion could be applied to other animals exposed to natural or imposed trauma, thus improving protocols involving animal handling, including veterinarian procedures.


Asunto(s)
Antiarrítmicos/farmacología , Atropina/farmacología , Crotalus/fisiología , Frecuencia Cardíaca , Arritmia Sinusal Respiratoria , Animales , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Arritmia Sinusal Respiratoria/efectos de los fármacos , Telemetría/veterinaria
9.
Artículo en Inglés | MEDLINE | ID: mdl-31505219

RESUMEN

Embryonic turtles have four distinct vascular beds that separately perfuse the developing embryo's body and the extra-embryonic yolk sac, amnion and chorioallantoic membrane (CAM). The mechanisms enabling differential regulation of blood flow through these separate beds, in order to meet the varying demands of the embryo during development, is of current interest. The present investigation followed the changes in blood flow distribution during an acute exposure to hypoxia and after α-adrenergic blockade. We monitored heart rate (fH), mean arterial pressure (Pm), and determined relative blood flow distribution (%Q̇sys) using colored microspheres. At 70% and 90% of the incubation period hypoxia elicited a bradycardia without changing Pm while %Q̇sys was altered only at 70%, increasing to the CAM and liver. Blockade of α-adrenergic responses with phentolamine did not change fH or Pm but increased %Q̇sys to the shell. These results show the capacity of embryos to redistribute cardiac output during acute hypoxia, however α-adrenergic receptors seemed to play a relatively small role in embryonic cardiovascular regulation.


Asunto(s)
Adrenérgicos/farmacología , Circulación Sanguínea/fisiología , Embrión no Mamífero/fisiopatología , Hipoxia/fisiopatología , Tortugas/embriología , Tortugas/fisiología , Animales , Presión Arterial/efectos de los fármacos , Circulación Sanguínea/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Flujo Sanguíneo Regional/efectos de los fármacos
10.
J Exp Biol ; 221(Pt 18)2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30065037

RESUMEN

This study investigated the maturation of convective oxygen transport in embryos of the snapping turtle (Chelydra serpentina). Measurements included: mass, oxygen consumption (V̇O2 ), heart rate, blood oxygen content and affinity and blood flow distribution at 50%, 70% and 90% of the incubation period. Body mass increased exponentially, paralleled by increased cardiac mass and metabolic rate. Heart rate was constant from 50% to 70% incubation but was significantly reduced at 90% incubation. Hematocrit and hemoglobin concentration were constant at the three points of development studied but arteriovenous difference doubled from 50% to 90% incubation. Oxygen affinity was lower for the early 50% incubation group (stage 19) compared with all other age groups. Blood flow was directed predominantly to the embryo but was highest to the chorioallantoic membrane (CAM) at 70% incubation and was directed away from the yolk as it was depleted at 90% incubation. The findings indicate that the plateau or reduction in egg V̇O2  characteristic of the late incubation period of turtle embryos may be related to an overall reduction in mass-specific V̇O2  that is correlated with decreasing relative heart mass and plateaued CAM blood flow. Importantly, if the blood properties remain unchanged prior to hatching, as they did during the incubation period studied in the current investigation, this could account for the pattern of V̇O2 previously reported for embryonic snapping turtles prior to hatching.


Asunto(s)
Frecuencia Cardíaca , Consumo de Oxígeno , Oxígeno/metabolismo , Transporte Respiratorio , Tortugas/metabolismo , Animales , Peso Corporal , Embrión no Mamífero/metabolismo , Oxígeno/sangre , Tortugas/embriología
11.
Artículo en Inglés | MEDLINE | ID: mdl-27720746

RESUMEN

Clarias gariepinus is a facultative air-breathing catfish that exhibits changes in heart rate (ƒH) associated with air-breaths (AB). A transient bradycardia prior to the AB is followed by sustained tachycardia during breath-hold. This study evaluated air-breathing and cardiac responses to sustained aerobic exercise in juveniles (total length~20cm), and how exercise influenced variations in fH associated with AB. In particular, it investigated the role of adrenergic and cholinergic control in cardiac responses, and effects of pharmacological abolition of this control on air-breathing responses. Sustained exercise at 15, 30 and 45cms-1 in a swim tunnel caused significant increases in fAB and fH, from approximately 5breathsh-1 and 60heartbeatsmin-1 at the lowest speed, to over 60breathsh-1 and 100beatsmin-1 at the highest, respectively. There was a progressive decline in the degree of variation in fH, around each AB, as fAB increased with exercise intensity. Total autonomic blockade abolished all variation in fH during exercise, and around each AB, but fAB responses were the same as in untreated animals. Cardiac responses were exclusively due to modulation of inhibitory cholinergic tone, which varied from >100% at the lowest speed to <10% at the highest. Cholinergic blockade had no effect on fAB compared to untreated fish. Excitatory ß-adrenergic tone was approximately 20% and did not vary with swimming speed, but its blockade increased fAB at all speeds, compared to untreated animals. This reveals complex effects of autonomic control on air-breathing during exercise in C. gariepinus, which deserve further investigation.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Bagres/fisiología , Corazón/inervación , Actividad Motora , Resistencia Física , Sistema Respiratorio/inervación , Antagonistas Adrenérgicos beta/farmacología , Algoritmos , Animales , Acuicultura , Atropina/farmacología , Sistema Nervioso Autónomo/crecimiento & desarrollo , Conducta Animal/efectos de los fármacos , Bagres/crecimiento & desarrollo , Antagonistas Colinérgicos/farmacología , Corazón/efectos de los fármacos , Corazón/crecimiento & desarrollo , Corazón/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Resistencia Física/efectos de los fármacos , Propranolol/farmacología , Reproducibilidad de los Resultados , Fenómenos Fisiológicos Respiratorios/efectos de los fármacos , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/crecimiento & desarrollo
12.
Artículo en Inglés | MEDLINE | ID: mdl-28011410

RESUMEN

Oxygen consumption (VO2), heart rate (fH), heart mass (Mh) and body mass (Mb) were measured during embryonic incubation and in hatchlings of green iguana (Iguana iguana). Mean fH and VO2 were unvarying in early stage embryos. VO2 increased exponentially during the later stages of embryonic development, doubling by the end of incubation, while fH was constant, resulting in a 2.7-fold increase in oxygen pulse. Compared to late stage embryos, the mean inactive level of VO2 in hatchlings was 1.7 fold higher, while fH was reduced by half resulting in a further 3.6 fold increase in oxygen pulse. There was an overall negative correlation between mean fH and VO2 when data from hatchlings was included. Thus, predicting metabolic rate as VO2 from measurements of fH is not possible in embryonic reptiles. Convective transport of oxygen to supply metabolism during embryonic incubation was more reliably indicated as an index of cardiac output (COi) derived from the product of fH and Mh. However, a thorough analysis of factors determining rates of oxygen supply during development and eclosion in reptiles will require cannulation of blood vessels that proved impossible in the present study, to determine oxygen carrying capacity by the blood and arteriovenous oxygen content difference (A-V diff), plus patterns of blood flow.


Asunto(s)
Iguanas/crecimiento & desarrollo , Iguanas/fisiología , Animales , Peso Corporal , Gasto Cardíaco , Corazón/anatomía & histología , Frecuencia Cardíaca , Iguanas/anatomía & histología , Tamaño de los Órganos , Consumo de Oxígeno
13.
Artículo en Inglés | MEDLINE | ID: mdl-26086361

RESUMEN

Measurement of heart rate (fH) in embryonic reptiles has previously imposed some degree of invasive treatment on the developing embryo. Recently a non-invasive technique of fH detection from intact eggs was developed for commercial avian breeders and has since been used in biological research. This device uses infrared light, enabling it to detect heartbeats in very early embryos. However, infrared light is a source of heat and extended enclosure of an egg in the device is likely to affect temperature with consequent effects on physiological processes, including fH. We studied the effect of use of the monitor on the temperature of eggs and on fH in two species of reptiles, the snapping turtle (Chelydra serpentina) and the green iguana (Iguana iguana). Egg temperature increased from a room temperature of 27-28 °C, by 26% in turtles and 14% in iguanas over 1h of enclosure, resulting in an increase in fH of 76-81% in turtles and 35-50% iguanas. These effects on fH can either be avoided by brief enclosure of each egg in the monitor or measured and accounted for during the design of long-term experiments.


Asunto(s)
Técnicas Biosensibles/métodos , Embrión no Mamífero/fisiología , Frecuencia Cardíaca/fisiología , Rayos Infrarrojos , Monitoreo Fisiológico/instrumentación , Animales , Embrión no Mamífero/embriología , Iguanas/embriología , Modelos Lineales , Óvulo/fisiología , Reproducibilidad de los Resultados , Especificidad de la Especie , Temperatura , Factores de Tiempo , Tortugas/embriología
14.
Artículo en Inglés | MEDLINE | ID: mdl-26071949

RESUMEN

The autonomic control of heart rate was studied throughout development in embryos of the green iguana, Iguana iguana by applying receptor agonists and antagonists of the parasympathetic and sympathetic systems. Acetylcholine (Ach) slowed or stopped the heart and atropine antagonized the response to Ach indicating the presence of muscarinic cholinoceptors on the heart of early embryos. However, atropine injections had no impact on heart rate until immediately before hatching, when it increased heart rate by 15%. This cholinergic tonus increased to 34% in hatchlings and dropped to 24% in adult iguanas. Although epinephrine was without effect, injection of propranolol slowed the heart throughout development, indicating the presence of ß-adrenergic receptors on the heart of early embryos, possibly stimulated by high levels of circulating catecholamines. The calculated excitatory tonus varied between 33% and 68% until immediately before hatching when it fell to 25% and 29%, a level retained in hatchlings and adults. Hypoxia caused a bradycardia in early embryos that was unaffected by injection of atropine indicating that hypoxia has a direct effect upon the heart. In later embryos and hatchlings hypoxia caused a tachycardia that was unaffected by injection of atropine. Subsequent injection of propranolol reduced heart rate both uncovering a hypoxic bradycardia in late embryos and abolishing tachycardia in hatchlings. Hypercapnia was without effect on heart rate in late stage embryos and in hatchlings.


Asunto(s)
Embrión no Mamífero/fisiología , Frecuencia Cardíaca/fisiología , Corazón/fisiología , Iguanas/fisiología , Acetilcolina/farmacología , Adrenérgicos/farmacología , Agonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/farmacología , Animales , Atropina/farmacología , Sistema Nervioso Autónomo/efectos de los fármacos , Sistema Nervioso Autónomo/embriología , Sistema Nervioso Autónomo/fisiología , Colinérgicos/farmacología , Agonistas Colinérgicos/farmacología , Electrocardiografía , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/embriología , Epinefrina/farmacología , Corazón/efectos de los fármacos , Corazón/embriología , Frecuencia Cardíaca/efectos de los fármacos , Iguanas/embriología , Antagonistas Muscarínicos/farmacología , Miocardio/metabolismo , Propranolol/farmacología , Receptores Adrenérgicos beta/metabolismo , Receptores Colinérgicos/metabolismo
15.
J Exp Biol ; 217(Pt 5): 690-703, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24574385

RESUMEN

Heart rate in vertebrates is controlled by activity in the autonomic nervous system. In spontaneously active or experimentally prepared animals, inhibitory parasympathetic control is predominant and is responsible for instantaneous changes in heart rate, such as occur at the first air breath following a period of apnoea in discontinuous breathers like inactive reptiles or species that surface to air breathe after a period of submersion. Parasympathetic control, exerted via fast-conducting, myelinated efferent fibres in the vagus nerve, is also responsible for beat-to-beat changes in heart rate such as the high frequency components observed in spectral analysis of heart rate variability. These include respiratory modulation of the heartbeat that can generate cardiorespiratory synchrony in fish and respiratory sinus arrhythmia in mammals. Both may increase the effectiveness of respiratory gas exchange. Although the central interactions generating respiratory modulation of the heartbeat seem to be highly conserved through vertebrate phylogeny, they are different in kind and location, and in most species are as yet little understood. The heart in vertebrate embryos possesses both muscarinic cholinergic and ß-adrenergic receptors very early in development. Adrenergic control by circulating catecholamines seems important throughout development. However, innervation of the cardiac receptors is delayed and first evidence of a functional cholinergic tonus on the heart, exerted via the vagus nerve, is often seen shortly before or immediately after hatching or birth, suggesting that it may be coordinated with the onset of central respiratory rhythmicity and subsequent breathing.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Fenómenos Fisiológicos Cardiovasculares , Frecuencia Cardíaca , Filogenia , Fenómenos Fisiológicos Respiratorios , Vertebrados/fisiología , Animales
16.
Mar Pollut Bull ; 203: 116428, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735170

RESUMEN

The steel industry is a significant worldwide source of atmospheric particulate matter (PM). Part of PM may settle (SePM) and deposit metal/metalloid and metallic nanoparticles in aquatic ecosystems. However, such an air-to-water cross-contamination is not observed by most monitoring agencies. The region of Vitoria City is the main location of iron processing for exports in Brazil, and it has rivers, estuaries, and coastal areas affected by SePM. We have evaluated the effects of SePM on a local representative fish species, the fat snook, Centropomus parallelus. After acclimation, 48 fishes (61.67 ± 27.83 g) were individually exposed for 96 h to diverse levels of SePM (0.0, 0.01, 0.1 and 1 g/L-1). The presence of metals in the blood and several blood biomarkers were analyzed to evaluate the impact of SePM on stress signaling, blood oxygen transport capacity, and innate immune activity. Metal bioaccumulation was measured from blood in two separately analyzed compartments: intracellular (erythrocytes plus white blood cells) and extracellular (plasma). The major metals present at all contamination levels in both compartments were Fe and Zn, followed by Al and Cu, plus traces of 'Emerging metals': Ba, Ce, La, Rb, Se, Sr, and Ti. Emerging metals refer to those that have recently been identified in water as contaminants, encompassing rare earth elements and critical technology elements, as documented in previous studies (See REEs and TCEs in Cobelo-García et al., 2015; Batley et al., 2022). Multivariate analysis revealed that SePM had strong, dose-dependent correlations with all biomarker groups and indicated that blood oxygen-carrying capacity had the highest contamination responsiveness. Metal contamination also increased cortisol and blood glucose levels, attesting to increased stress signaling, and had a negative effect on innate immune activity. Knowledge of the risks related to SePM contamination remains rudimentary. However, the fact that there was metal bioaccumulation, causing impairment of fundamental physiological and cellular processes in this ecologically relevant fish species, consumed by the local human population, highlights the pressing need for further monitoring and eventual control of SePM contamination.


Asunto(s)
Inmunidad Innata , Material Particulado , Contaminantes Químicos del Agua , Animales , Inmunidad Innata/efectos de los fármacos , Material Particulado/toxicidad , Contaminantes Químicos del Agua/toxicidad , Monitoreo del Ambiente , Acero , Brasil , Metales/toxicidad , Contaminantes Atmosféricos/toxicidad
17.
J Exp Biol ; 216(Pt 10): 1881-9, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23393283

RESUMEN

The morphologically undivided ventricle of the heart in non-crocodilian reptiles permits the mixing of oxygen-rich blood returning from the lungs and oxygen-poor blood from the systemic circulation. A possible functional significance for this intra-cardiac shunt has been debated for almost a century. Unilateral left vagotomy rendered the single effective pulmonary artery of the South American rattlesnake, Crotalus durissus, unable to adjust the magnitude of blood flow to the lung. The higher constant perfusion of the lung circulation and the incapability of adjusting the right-left shunt in left-denervated snakes persisted over time, providing a unique model for investigation of the long-term consequences of cardiac shunting in a squamate. Oxygen uptake recorded at rest and during spontaneous and forced activity was not affected by removing control of the cardiac shunt. Furthermore, metabolic rate and energetic balance during the post-prandial metabolic increment, plus the food conversion efficiency and growth rate, were all similarly unaffected. These results show that control of cardiac shunting is not associated with a clear functional advantage in adjusting metabolic rate, effectiveness of digestion or growth rates.


Asunto(s)
Crotalus/crecimiento & desarrollo , Crotalus/fisiología , Corazón/fisiología , Consumo de Oxígeno/fisiología , Nervio Vago/fisiología , Anestesia , Animales , Metabolismo Basal/fisiología , Peso Corporal , Estimulación Eléctrica , Conducta Alimentaria/fisiología , Reproducibilidad de los Resultados , Descanso/fisiología , Vagotomía , Nervio Vago/cirugía
18.
PNAS Nexus ; 2(10): pgad331, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37885622

RESUMEN

Cooperative ligand binding to linear polymers is fundamental in many scientific disciplines, particularly biological and chemical physics and engineering. Such ligand binding interactions have been widely modeled using infinite one-dimensional (1D) Ising models even in cases where the linear polymers are more complex (e.g. actin filaments and other double-stranded linear polymers). Here, we use sequence-generating and transfer matrix methods to obtain an analytical method for cooperative equilibrium ligand binding to double-stranded Ising lattices. We use this exact solution to evaluate binding properties and features and analyze experimental binding data of cooperative binding of the regulatory protein, cofilin, to actin filaments. This analysis, with additional experimental information about the observed bound cofilin cluster sizes and filament structure, reveals that a bound cofilin promotes cooperative binding to its longitudinal nearest-neighbors but has very modest effects on lateral nearest-neighbors. The bound cofilin cluster sizes calculated from the best fit parameters from the double-stranded model are considerably larger than when calculated with the 1D model, consistent with experimental observations made by electron microscopy and fluorescence imaging. The exact solution obtained and the method for using the solution developed here can be widely used for analysis of variety of multistranded lattice systems.

19.
J Exp Biol ; 215(Pt 8): 1323-30, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22442370

RESUMEN

The contribution of air breathing to aerobic metabolic scope and exercise performance was investigated in a teleost with bimodal respiration, the banded knifefish, submitted to a critical swimming speed (U(crit)) protocol at 30°C. Seven individuals (mean ± s.e.m. mass 89±7 g, total length 230±4 mm) achieved a U(crit) of 2.1±1 body lengths (BL) s(-1) and an active metabolic rate (AMR) of 350±21 mg kg(-1) h(-1), with 38±6% derived from air breathing. All of the knifefish exhibited a significant increase in air-breathing frequency (f(AB)) with swimming speed. If denied access to air in normoxia, these individuals achieved a U(crit) of 2.0±0.2 BL s(-1) and an AMR of 368±24 mg kg(-1) h(-1) by gill ventilation alone. In normoxia, therefore, the contribution of air breathing to scope and exercise was entirely facultative. In aquatic hypoxia (P(O(2))=4 kPa) with access to normoxic air, the knifefish achieved a U(crit) of 2.0±0.1 BL s(-1) and an AMR of 338±29 mg kg(-1) h(-1), similar to aquatic normoxia, but with 55±5% of AMR derived from air breathing. Indeed, f(AB) was higher than in normoxia at all swimming speeds, with a profound exponential increase during exercise. If the knifefish were denied access to air in hypoxia, U(crit) declined to 1.2±0.1 BL s(-1) and AMR declined to 199±29 mg kg(-1) h(-1). Therefore, air breathing allowed the knifefish to avoid limitations to aerobic scope and exercise performance in aquatic hypoxia.


Asunto(s)
Aire , Gymnotiformes/fisiología , Condicionamiento Físico Animal , Respiración , Aerobiosis , Animales , Hipoxia , Consumo de Oxígeno , Natación
20.
Biol Psychol ; 172: 108382, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35777519

RESUMEN

Mammals show clear changes in heart rate linked to lung ventilation, characterized as respiratory sinus arrhythmia (RSA). These changes are controlled in part by variations in the level of inhibitory control exerted on the heart by the parasympathetic arm of the autonomic nervous system (PNS). This originates from preganglionic neurons in the nucleus ambiguous that supply phasic, respiration-related activity to the cardiac branch of the vagus nerve, via myelinated, efferent fibres with rapid conduction velocities. An elaboration of these central mechanisms, under the control of a 'vagal system' has been endowed by psychologists with multiple functions concerned with 'social engagement' in mammals and, in particular, humans. Long-term study of cardiorespiratory interactions (CRI) in other major groups of vertebrates has established that they all show both tonic and phasic control of heart rate, imposed by the PNS. This derives centrally from neurones located in variously distributed nuclei, supplying the heart via fast-conducting, myelinated, efferent fibres. Water-breathing vertebrates, which include fishes and larval amphibians, typically show direct, 1:1 CRI between heart beats and gill ventilation, controlled from the dorsal vagal motor nucleus. In air-breathing, ectothermic vertebrates, including reptiles, amphibians and lungfish, CRI mirroring RSA have been shown to improve oxygen uptake during phasic ventilation by changes in perfusion of their respiratory organs, due to shunting of blood over across their undivided hearts. This system may constitute the evolutionary basis of that generating RSA in mammals, which now lacks a major physiological role in respiratory gas exchange, due to their completely divided systemic and pulmonary circulations.


Asunto(s)
Sistema Nervioso Autónomo , Vertebrados , Animales , Arritmia Sinusal , Sistema Nervioso Autónomo/fisiología , Peces/fisiología , Frecuencia Cardíaca/fisiología , Humanos , Mamíferos , Filogenia , Respiración , Nervio Vago/fisiología , Vertebrados/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA