Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37047353

RESUMEN

Sigma-2 receptor (S2R) is a S2R ligand-binding site historically associated with reportedly 21.5 kDa proteins that have been linked to several diseases, such as cancer, Alzheimer's disease, and schizophrenia. The S2R is highly expressed in various tumors, where it correlates with the proliferative status of the malignant cells. Recently, S2R was reported to be the transmembrane protein TMEM97. Prior to that, we had been investigating the translocator protein (TSPO) as a potential 21.5 kDa S2R candidate protein with reported heme and sterol associations. Here, we investigate the contributions of TMEM97 and TSPO to S2R activity in MCF7 breast adenocarcinoma and MIA PaCa-2 (MP) pancreatic carcinoma cells. Additionally, the role of the reported S2R-interacting partner PGRMC1 was also elucidated. Proximity ligation assays and co-immunoprecipitation show a functional association between S2R and TSPO. Moreover, a close physical colocalization of TMEM97 and TSPO was found in MP cells. In MCF7 cells, co-immunoprecipitation only occurred with TMEM97 but not with PGRMC1, which was further confirmed by confocal microscopy experiments. Treatment with the TMEM97 ligand 20-(S)-hydroxycholesterol reduced co-immunoprecipitation of both TMEM97 and PGRMC1 in immune pellets of immunoprecipitated TSPO in MP cells. To the best of our knowledge, this is the first suggestion of a (functional) interaction between TSPO and TMEM97 that can be affected by S2R ligands.


Asunto(s)
Receptores sigma , Humanos , Ligandos , Unión Proteica , Receptores sigma/metabolismo , Sitios de Unión , Receptores de GABA/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Progesterona/metabolismo
2.
Biochem Biophys Res Commun ; 524(1): 64-69, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-31980178

RESUMEN

PGRMC1 is a protein from the MAPR family with a range of cellular functions. PGRMC1 has been described to play a role in fertility, neuroprotection, steroidogenesis, membrane trafficking and in cancer cell biology. PGRMC1 represents a likely key regulator of cell metabolism and proliferation, as well as a potential target for anti-cancer therapies. To further understand the functions of PGRMC1 and the mechanism of the small molecule inhibitor of PGRMC1, AG-205, proteins differentially bound to PGRMC1 were identified following AG-205 treatment of MIA PaCa-2 cells. Our results suggest that AG-205 influences PGRMC1 interactions with the actin cytoskeleton. The binding of two PGRMC1-associated proteins that support this, RACK1 and alpha-Actinin-1, was reduced following AG-205 treatment. The biology associated with PGRMC1 binding partners identified here merits further investigation.


Asunto(s)
Actinas/metabolismo , Indoles/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Receptores de Progesterona/antagonistas & inhibidores , Citoesqueleto de Actina/metabolismo , Línea Celular Tumoral , Humanos , Espectrometría de Masas , Unión Proteica , Receptores de Cinasa C Activada/metabolismo
3.
Nurse Educ Today ; 136: 106134, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38387213

RESUMEN

BACKGROUND: Nursing students from diverse or equity backgrounds are less likely to possess the required skills to ensure success in their studies. This research explores the impact of embedded support on student learning in a first-year foundational subject, Contexts of Nursing, in an undergraduate nursing degree.t. METHODS: The Embedded Tutor Program offers specialised tutoring support for first-year undergraduate students. Embedded tutors, with backgrounds as registered nurses and academics, provided online one-on-one feedback to students on draft assessment tasks. Outreach contact was provided to students at risk of failing. A Pearson's Chi-squared test was used to assess the impact of tutor support on grade distribution and a paired student t-test was used to assess the difference in cumulative marks for students from equity backgrounds. Statistical significance was set at p < 0.05. Feedback provided by students, tutors and staff in an online anonymous survey was thematically analysed. RESULTS: There was a significant grade shift for the 267 students who met with an embedded tutor (p < 0.05). Students who were a member of an Australian Government identified equity group had a significant increase in their cumulative mark if they met with a tutor of 9-17 % (p < 0.05). This improvement in cumulative mark was maintained for students with cumulative equity factors. The overwhelming majority of students who were identified as at risk of failing and met with a tutor following outreach support received a passing grade. Students reported growing skills and confidence in academic literacy was a key benefit of the program. CONCLUSION: A shared approach to delivering education has a positive effect on the experience of learning. The combined efforts of the subject convenor, embedded tutors, and extended student service roles within the University resulted in outcomes that were positive for student learning. Determining student capacity for learning extended beyond a student's consideration of grades or their progression in the program to include the development of self-efficacy.


Asunto(s)
Bachillerato en Enfermería , Estudiantes de Enfermería , Humanos , Bachillerato en Enfermería/métodos , Australia , Aprendizaje , Curriculum
4.
FEBS J ; 290(16): 4057-4073, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37042241

RESUMEN

Acyl-coenzyme A thioesterase (Acot) enzymes are involved in a broad range of essential intracellular roles including cell signalling, lipid metabolism, inflammation and the opening of ion channels. Dysregulation in lipid metabolism has been linked to neuroinflammatory and neurological disorders such as Alzheimer's and Parkinson's diseases. Structurally, Acot enzymes adopt a circularised trimeric arrangement with each monomer containing an N- and a C-terminal hotdog domain. Acot7 spontaneously forms amyloid fibrils in vitro under physiological conditions. The resultant amyloid fibrillar structures were characterised by dye-binding fluorescence assays, far-UV circular dichroism spectroscopy, transmission electron microscopy and X-ray fibre diffraction. Acot7 has an unusual mechanism of aggregation with no lag phase. The initial phase (~ 18 h) of aggregation involves conformational rearrangement within the oligomers to form species of enhanced ß-sheet character. The subsequent loss of α-helical structure is accompanied by large-scale amyloid fibril formation. The crystal structure of Acot7 revealed an unexpected arrangement of the two domains within the circularised trimeric structure, which is the basis for a proposed mechanism of amyloid fibril formation involving domain swapping during the initial phase of aggregation. Acot7 formed fibrils in the presence of its substrate arachidonoyl-CoA and its inhibitors and maintained its enzyme activity during fibril assembly. It is proposed that the Acot7 fibrillar form acts as functional amyloid.


Asunto(s)
Amiloide , Enfermedad de Parkinson , Humanos , Amiloide/química , Difracción de Rayos X , Microscopía Electrónica de Transmisión , Inflamación , Dicroismo Circular
5.
FEBS Lett ; 596(18): 2409-2417, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35993565

RESUMEN

We recently reported that the membrane-associated progesterone receptor (MAPR) protein family (mammalian members: PGRMC1, PGRMC2, NEUFC and NENF) originated from a new class of prokaryotic cytochrome b5 (cytb5 ) domain proteins, called cytb5M (MAPR-like). Relative to classical cytb5 proteins, MAPR and ctyb5M proteins shared unique sequence elements and a distinct heme-binding orientation at an approximately 90° rotation relative to classical cytb5 , as demonstrated in the archetypal crystal structure of a cytb5M protein (PDB accession number 6NZX). Here, we present the crystal structure of an archaeal cytb5M domain (Methanococcoides burtonii WP_011499504.1, PDB:6VZ6). It exhibits similar heme binding to the 6NZX cytb5M , supporting the deduction that MAPR-like heme orientation was inherited from the prokaryotic ancestor of the original eukaryotic MAPR gene.


Asunto(s)
Citocromos b , Receptores de Progesterona , Animales , Archaea/genética , Archaea/metabolismo , Citocromos b/genética , Citocromos b/metabolismo , Citocromos b5/genética , Hemo/metabolismo , Mamíferos , Unión Proteica , Receptores de Progesterona/genética
6.
BMC Mol Cell Biol ; 21(1): 26, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32293262

RESUMEN

BACKGROUND: Progesterone receptor membrane component 1 (PGRMC1) is often elevated in cancers, and exists in alternative states of phosphorylation. A motif centered on PGRMC1 Y180 was evolutionarily acquired concurrently with the embryological gastrulation organizer that orchestrates vertebrate tissue differentiation. RESULTS: Here, we show that mutagenic manipulation of PGRMC1 phosphorylation alters cell metabolism, genomic stability, and CpG methylation. Each of several mutants elicited distinct patterns of genomic CpG methylation. Mutation of S57A/Y180/S181A led to increased net hypermethylation, reminiscent of embryonic stem cells. Pathways enrichment analysis suggested modulation of processes related to animal cell differentiation status and tissue identity, as well as cell cycle control and ATM/ATR DNA damage repair regulation. We detected different genomic mutation rates in culture. CONCLUSIONS: A companion manuscript shows that these cell states dramatically affect protein abundances, cell and mitochondrial morphology, and glycolytic metabolism. We propose that PGRMC1 phosphorylation status modulates cellular plasticity mechanisms relevant to early embryological tissue differentiation.


Asunto(s)
Fosforilación , Receptores de Progesterona , Animales , Diferenciación Celular , Línea Celular , Metilación de ADN , Enfermedad , Embriología , Epigenómica , Humanos , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/metabolismo , Ratones , Mutación , Tasa de Mutación , Procesamiento Proteico-Postraduccional , Receptores de Progesterona/biosíntesis , Receptores de Progesterona/metabolismo
7.
BMC Mol Cell Biol ; 21(1): 24, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245408

RESUMEN

BACKGROUND: Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in many cancer cells, where it is associated with detrimental patient outcomes. It contains phosphorylated tyrosines which evolutionarily preceded deuterostome gastrulation and tissue differentiation mechanisms. RESULTS: We demonstrate that manipulating PGRMC1 phosphorylation status in MIA PaCa-2 (MP) cells imposes broad pleiotropic effects. Relative to parental cells over-expressing hemagglutinin-tagged wild-type (WT) PGRMC1-HA, cells expressing a PGRMC1-HA-S57A/S181A double mutant (DM) exhibited reduced levels of proteins involved in energy metabolism and mitochondrial function, and altered glucose metabolism suggesting modulation of the Warburg effect. This was associated with increased PI3K/AKT activity, altered cell shape, actin cytoskeleton, motility, and mitochondrial properties. An S57A/Y180F/S181A triple mutant (TM) indicated the involvement of Y180 in PI3K/AKT activation. Mutation of Y180F strongly attenuated subcutaneous xenograft tumor growth in NOD-SCID gamma mice. Elsewhere we demonstrate altered metabolism, mutation incidence, and epigenetic status in these cells. CONCLUSIONS: Altogether, these results indicate that mutational manipulation of PGRMC1 phosphorylation status exerts broad pleiotropic effects relevant to cancer and other cell biology.


Asunto(s)
Fosforilación , Receptores de Progesterona , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Forma de la Célula , Metabolismo Energético , Glucólisis , Humanos , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mitocondrias/metabolismo , Neoplasias , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Progesterona/biosíntesis , Receptores de Progesterona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA