Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Exp Bot ; 75(5): 1265-1273, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37940194

RESUMEN

Calcium is a universal messenger in different kingdoms of living organisms and regulates most physiological processes, including defense against pathogens. The threat of viral infections in humans has become very clear in recent years, and this has triggered detailed research into all aspects of host-virus interactions, including the suppression of calcium signaling in infected cells. At the same time, however, the threat of plant viral infections is underestimated in society, and research in the field of calcium signaling during plant viral infections is scarce. Here we highlight an emerging role of calcium signaling for antiviral protection in plants, in parallel with the known evidence from studies of animal cells. Obtaining more knowledge in this domain might open up new perspectives for future crop protection and the improvement of food security.


Asunto(s)
Virus de Plantas , Virosis , Humanos , Animales , Señalización del Calcio , Plantas/genética , Virus de Plantas/fisiología , Antivirales , Enfermedades de las Plantas , Inmunidad de la Planta
2.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34504003

RESUMEN

Plants adjust their energy metabolism to continuous environmental fluctuations, resulting in a tremendous plasticity in their architecture. The regulatory circuits involved, however, remain largely unresolved. In Arabidopsis, moderate perturbations in photosynthetic activity, administered by short-term low light exposure or unexpected darkness, lead to increased lateral root (LR) initiation. Consistent with expression of low-energy markers, these treatments alter energy homeostasis and reduce sugar availability in roots. Here, we demonstrate that the LR response requires the metabolic stress sensor kinase Snf1-RELATED-KINASE1 (SnRK1), which phosphorylates the transcription factor BASIC LEUCINE ZIPPER63 (bZIP63) that directly binds and activates the promoter of AUXIN RESPONSE FACTOR19 (ARF19), a key regulator of LR initiation. Consistently, starvation-induced ARF19 transcription is impaired in bzip63 mutants. This study highlights a positive developmental function of SnRK1. During energy limitation, LRs are initiated and primed for outgrowth upon recovery. Hence, this study provides mechanistic insights into how energy shapes the agronomically important root system.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Metabolismo Energético , Homeostasis , Raíces de Plantas/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas , Fosforilación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Factores de Transcripción/genética
3.
J Exp Bot ; 73(21): 7165-7181, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36169618

RESUMEN

Phytohormones are major signaling components that contribute to nearly all aspects of plant life. They constitute an interconnected communication network to fine-tune growth and development in response to the ever-changing environment. To this end, they have to coordinate with other signaling components, such as reactive oxygen species and calcium signals. On the one hand, the two endosymbiotic organelles, plastids and mitochondria, control various aspects of phytohormone signaling and harbor important steps of hormone precursor biosynthesis. On the other hand, phytohormones have feedback actions on organellar functions. In addition, organelles and phytohormones often act in parallel in a coordinated matter to regulate cellular functions. Therefore, linking organelle functions with increasing knowledge of phytohormone biosynthesis, perception, and signaling will reveal new aspects of plant stress tolerance. In this review, we highlight recent work on organelle-phytohormone interactions focusing on the major stress-related hormones abscisic acid, jasmonates, salicylic acid, and ethylene.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Plantas , Orgánulos , Ácido Abscísico , Ácido Salicílico
4.
Plant Cell ; 30(2): 495-509, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29348240

RESUMEN

Sustaining energy homeostasis is of pivotal importance for all living organisms. In Arabidopsis thaliana, evolutionarily conserved SnRK1 kinases (Snf1-RELATED KINASE1) control metabolic adaptation during low energy stress. To unravel starvation-induced transcriptional mechanisms, we performed transcriptome studies of inducible knockdown lines and found that S1-basic leucine zipper transcription factors (S1-bZIPs) control a defined subset of genes downstream of SnRK1. For example, S1-bZIPs coordinate the expression of genes involved in branched-chain amino acid catabolism, which constitutes an alternative mitochondrial respiratory pathway that is crucial for plant survival during starvation. Molecular analyses defined S1-bZIPs as SnRK1-dependent regulators that directly control transcription via binding to G-box promoter elements. Moreover, SnRK1 triggers phosphorylation of group C-bZIPs and the formation of C/S1-heterodimers and, thus, the recruitment of SnRK1 directly to target promoters. Subsequently, the C/S1-bZIP-SnRK1 complex interacts with the histone acetylation machinery to remodel chromatin and facilitate transcription. Taken together, this work reveals molecular mechanisms underlying how energy deprivation is transduced to reprogram gene expression, leading to metabolic adaptation upon stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Redes y Vías Metabólicas , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Adaptación Fisiológica , Arabidopsis/enzimología , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Oscuridad , Metabolismo Energético , Perfilación de la Expresión Génica , Homeostasis , Mitocondrias/metabolismo , Fosforilación , Regiones Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinasas/genética
5.
Plant Cell Environ ; 43(6): 1484-1500, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32176335

RESUMEN

Drought is a major cause of losses in crop yield. Under field conditions, plants exposed to drought are usually also experiencing rapid changes in light intensity. Accordingly, plants need to acclimate to both, drought and light stress. Two crucial mechanisms in plant acclimation to changes in light conditions comprise thylakoid protein phosphorylation and dissipation of light energy as heat by non-photochemical quenching (NPQ). Here, we analyzed the acclimation efficacy of two different wheat varieties, by applying fluctuating light for analysis of plants, which had been subjected to a slowly developing drought stress as it usually occurs in the field. This novel approach allowed us to distinguish four drought phases, which are critical for grain yield, and to discover acclimatory responses which are independent of photodamage. In short-term, under fluctuating light, the slowdown of NPQ relaxation adjusts the photosynthetic activity to the reduced metabolic capacity. In long-term, the photosynthetic machinery acquires a drought-specific configuration by changing the PSII-LHCII phosphorylation pattern together with protein stoichiometry. Therefore, the fine-tuning of NPQ relaxation and PSII-LHCII phosphorylation pattern represent promising traits for future crop breeding strategies.


Asunto(s)
Sequías , Luz , Fotosíntesis/efectos de la radiación , Triticum/fisiología , Triticum/efectos de la radiación , Aclimatación/fisiología , Ecotipo , Complejos de Proteína Captadores de Luz/metabolismo , Fosforilación/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Estrés Fisiológico/efectos de la radiación , Triticum/crecimiento & desarrollo
6.
J Exp Bot ; 69(19): 4583-4590, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-29846689

RESUMEN

Post-translational modifications are essential mediators between stimuli from development or the environment and adaptive transcriptional patterns. Recent data allow a first glimpse at how two modifications, phosphorylation and sumoylation, act interdependently to modulate stress responses. In particular, many components of the SUMO conjugation system are phosphoproteins, and some regulators and enzymes of protein phosphorylation can be sumoylated. Equally important, however, a number of proteins can be subject to both modifications. These substrates also have the capacity to connect stimuli transmitted via sumoylation with those transmitted via phosphorylation. As a prime example, we review data suggesting that nitrate reductase is a hub that integrates cues from these two modifications. Powerful proteomics approaches allowed the identification of additional common substrates, paving the way for studies to understand, on a broader basis, the cross-talk of phosphorylation with sumoylation and how it contributes to plant growth.


Asunto(s)
Fosforilación , Proteínas de Plantas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación/fisiología , Proteoma
7.
Plant J ; 85(1): 120-133, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26662259

RESUMEN

The SnRK1 protein kinase balances cellular energy levels in accordance with extracellular conditions and is thereby key for plant stress tolerance. In addition, SnRK1 has been implicated in numerous growth and developmental processes from seed filling and maturation to flowering and senescence. Despite its importance, the mechanisms that regulate SnRK1 activity are poorly understood. Here, we demonstrate that the SnRK1 complex is SUMOylated on multiple subunits and identify SIZ1 as the E3 Small Ubiquitin-like Modifier (SUMO) ligase responsible for this modification. We further show that SnRK1 is ubiquitinated in a SIZ1-dependent manner, causing its degradation through the proteasome. In consequence, SnRK1 degradation is deficient in siz1-2 mutants, leading to its accumulation and hyperactivation of SnRK1 signaling. Finally, SnRK1 degradation is strictly dependent on its activity, as inactive SnRK1 variants are aberrantly stable but recover normal degradation when expressed as SUMO mimetics. Altogether, our data suggest that active SnRK1 triggers its own SUMOylation and degradation, establishing a negative feedback loop that attenuates SnRK1 signaling and prevents detrimental hyperactivation of stress responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Ligasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Sumoilación , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Ligasas/genética , Mutación , Complejo de la Endopetidasa Proteasomal , Proteínas Serina-Treonina Quinasas/genética , Semillas/genética , Semillas/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
J Exp Bot ; 67(13): 3793-807, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27053718

RESUMEN

To coordinate growth, development and responses to environmental stimuli, plant cells need to communicate the metabolic state between different sub-compartments of the cell. This requires signalling pathways, including protein kinases, secondary messengers such as Ca(2+) ions or reactive oxygen species (ROS) as well as metabolites and plant hormones. The signalling networks involved have been intensively studied over recent decades and have been elaborated more or less in detail. However, it has become evident that these signalling networks are also tightly interconnected and often merge at common targets such as a distinct group of transcription factors, most prominently ABI4, which are amenable to regulation by phosphorylation, potentially also in a Ca(2+)- or ROS-dependent fashion. Moreover, the signalling pathways connect several organelles or subcellular compartments, not only in functional but also in physical terms, linking for example chloroplasts to the nucleus or peroxisomes to chloroplasts thereby enabling physical routes for signalling by metabolite exchange or even protein translocation. Here we briefly discuss these novel findings and try to connect them in order to point out the remaining questions and emerging developments in plant organellar signalling.


Asunto(s)
Orgánulos/fisiología , Fenómenos Fisiológicos de las Plantas , Transducción de Señal , Núcleo Celular/metabolismo , Células Vegetales/metabolismo , Estrés Fisiológico
10.
J Exp Bot ; 67(13): 3855-72, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27117335

RESUMEN

Calcium-dependent protein kinases (CDPKs) are at the forefront of decoding transient Ca(2+) signals into physiological responses. They play a pivotal role in many aspects of plant life starting from pollen tube growth, during plant development, and in stress response to senescence and cell death. At the cellular level, Ca(2+) signals have a distinct, narrow distribution, thus requiring a conjoined localization of the decoders. Accordingly, most CDPKs have a distinct subcellular distribution which enables them to 'sense' the local Ca(2+) concentration and to interact specifically with their targets. Here we present a comprehensive overview of identified CDPK targets and discuss them in the context of kinase-substrate specificity and subcellular distribution of the CDPKs. This is particularly relevant for calcium-mediated phosphorylation where different CDPKs, as well as other kinases, were frequently reported to be involved in the regulation of the same target. However, often these studies were not performed in an in situ context. Thus, considering the specific expression patterns, distinct subcellular distribution, and different Ca(2+) affinities of CDPKs will narrow down the number of potential CDPKs for one given target. A number of aspects still remain unresolved, giving rise to pending questions for future research.


Asunto(s)
Espacio Intracelular/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteínas Quinasas/metabolismo , Fosforilación , Especificidad por Sustrato
11.
J Exp Bot ; 67(13): 3883-96, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27117338

RESUMEN

The regulation of photosynthetic light reactions by reversible protein phosphorylation is well established today, but functional studies have so far mostly been restricted to processes affecting light-harvesting complex II and the core proteins of photosystem II. Virtually no functional data are available on regulatory effects at the other photosynthetic complexes despite the identification of multiple phosphorylation sites. Therefore we summarize the available data from 50 published phospho-proteomics studies covering the main complexes involved in photosynthetic light reactions in the 'green lineage' (i.e. green algae and land plants) as well as its cyanobacterial counterparts. In addition, we performed an extensive orthologue search for the major photosynthetic thylakoid proteins in 41 sequenced genomes and generated sequence alignments to survey the phylogenetic distribution of phosphorylation sites and their evolutionary conservation from green algae to higher plants. We observed a number of uncharacterized phosphorylation hotspots at photosystem I and the ATP synthase with potential functional relevance as well as an unexpected divergence of phosphosites. Although technical limitations might account for a number of those differences, we think that many of these phosphosites have important functions. This is particularly important for mono- and dicot plants, where these sites might be involved in regulatory processes such as stress acclimation.


Asunto(s)
Cianobacterias/metabolismo , Evolución Molecular , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteínas de las Membranas de los Tilacoides/metabolismo , Tilacoides/metabolismo , Fosforilación
12.
J Exp Bot ; 67(13): 3897-907, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27270999

RESUMEN

AMPK and TOR protein kinases are the major control points of energy signaling in eukaryotic cells and organisms. They form the core of a complex regulatory network to co-ordinate metabolic activities in the cytosol with those in the mitochondria and plastids. Despite its relevance, it is still unclear when and how this regulatory pathway was formed during evolution, and to what extent its representations in the major eukaryotic lineages resemble each other. Here we have traced 153 essential proteins forming the human AMPK-TOR pathways across 412 species representing all three domains of life-prokaryotes (bacteria, archaea) and eukaryotes-and reconstructed their evolutionary history. The resulting phylogenetic profiles indicate the presence of primordial core pathways including seven proto-kinases in the last eukaryotic common ancestor. The evolutionary origins of the oldest components of the AMPK pathway, however, extend into the pre-eukaryotic era, and descendants of these ancient proteins can still be found in contemporary prokaryotes. The TOR complex in turn appears as a eukaryotic invention, possibly to aid in retrograde signaling between the mitochondria and the remainder of the cell. Within the eukaryotes, AMPK/TOR showed both a highly conserved core structure and a considerable plasticity. Most notably, KING1, a protein originally assigned as the γ subunit of AMPK in plants, is more closely related to the yeast SDS23 gene family than to the γ subunits in animals or fungi. This suggests its functional difference from a canonical AMPK γ subunit.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Archaea/genética , Bacterias/genética , Eucariontes/genética , Evolución Molecular , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Evolución Biológica , Serina-Treonina Quinasas TOR/metabolismo
13.
Biochem J ; 458(2): 313-22, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24328790

RESUMEN

Calcium is an important second messenger in eukaryotic cells that regulates many different cellular processes. To elucidate calcium regulation in chloroplasts, we identified the targets of calcium-dependent phosphorylation within the stromal proteome. A 73 kDa protein was identified as one of the most dominant proteins undergoing phosphorylation in a calcium-dependent manner in the stromal extracts of both Arabidopsis and Pisum. It was identified as TKL (transketolase), an essential enzyme of both the Calvin-Benson-Bassham cycle and the oxidative pentose phosphate pathway. Calcium-dependent phosphorylation of both Arabidopsis isoforms (AtTKL1 and AtTKL2) could be confirmed in vitro using recombinant proteins. The phosphorylation is catalysed by a stroma-localized protein kinase, which cannot utilize GTP. Phosphorylation of AtTKL1, the dominant isoform in most tissues, occurs at a serine residue that is conserved in TKLs of vascular plants. By contrast, an aspartate residue is present in this position in cyanobacteria, algae and mosses. Characterization of a phosphomimetic mutant (S428D) indicated that Ser428 phosphorylation exerts significant effects on the enzyme's substrate saturation kinetics at specific physiological pH values. The results of the present study point to a role for TKL phosphorylation in the regulation of carbon allocation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Carbono/metabolismo , Cloroplastos/metabolismo , Serina/metabolismo , Transcetolasa/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Datos de Secuencia Molecular , Fosforilación/fisiología , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Serina/genética , Transcetolasa/química , Transcetolasa/genética
14.
J Biol Chem ; 288(11): 7519-7527, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23341468

RESUMEN

Brassinosteroids (BRs) are steroid hormones that coordinate fundamental developmental programs in plants. In this study we show that in addition to the well established roles of BRs in regulating cell elongation and cell division events, BRs also govern cell fate decisions during stomata development in Arabidopsis thaliana. In wild-type A. thaliana, stomatal distribution follows the one-cell spacing rule; that is, adjacent stomata are spaced by at least one intervening pavement cell. This rule is interrupted in BR-deficient and BR signaling-deficient A. thaliana mutants, resulting in clustered stomata. We demonstrate that BIN2 and its homologues, GSK3/Shaggy-like kinases involved in BR signaling, can phosphorylate the MAPK kinases MKK4 and MKK5, which are members of the MAPK module YODA-MKK4/5-MPK3/6 that controls stomata development and patterning. BIN2 phosphorylates a GSK3/Shaggy-like kinase recognition motif in MKK4, which reduces MKK4 activity against its substrate MPK6 in vitro. In vivo we show that MKK4 and MKK5 act downstream of BR signaling because their overexpression rescued stomata patterning defects in BR-deficient plants. A model is proposed in which GSK3-mediated phosphorylation of MKK4 and MKK5 enables for a dynamic integration of endogenous or environmental cues signaled by BRs into cell fate decisions governed by the YODA-MKK4/5-MPK3/6 module.


Asunto(s)
Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucógeno Sintasa Quinasa 3/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Estomas de Plantas/metabolismo , Clonación Molecular , Escherichia coli/metabolismo , Glutatión Transferasa/metabolismo , Modelos Biológicos , Modelos Genéticos , Fosforilación , Plantas Modificadas Genéticamente , Proteínas Recombinantes/metabolismo , Transducción de Señal , Esteroides/metabolismo
17.
Plant Commun ; 5(6): 100920, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38616489

RESUMEN

Stress Knowledge Map (SKM; https://skm.nib.si) is a publicly available resource containing two complementary knowledge graphs that describe the current knowledge of biochemical, signaling, and regulatory molecular interactions in plants: a highly curated model of plant stress signaling (PSS; 543 reactions) and a large comprehensive knowledge network (488 390 interactions). Both were constructed by domain experts through systematic curation of diverse literature and database resources. SKM provides a single entry point for investigations of plant stress response and related growth trade-offs, as well as interactive explorations of current knowledge. PSS is also formulated as a qualitative and quantitative model for systems biology and thus represents a starting point for a plant digital twin. Here, we describe the features of SKM and show, through two case studies, how it can be used for complex analyses, including systematic hypothesis generation and design of validation experiments, or to gain new insights into experimental observations in plant biology.


Asunto(s)
Plantas , Estrés Fisiológico , Biología de Sistemas , Plantas/genética , Plantas/metabolismo , Fenómenos Fisiológicos de las Plantas/genética , Transducción de Señal/genética , Bases de Datos Factuales
18.
J Vis Exp ; (208)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38912820

RESUMEN

High throughput image-based phenotyping is a powerful tool to non-invasively determine the development and performance of plants under specific conditions over time. By using multiple imaging sensors, many traits of interest can be assessed, including plant biomass, photosynthetic efficiency, canopy temperature, and leaf reflectance indices. Plants are frequently exposed to multiple stresses under field conditions where severe heat waves, flooding, and drought events seriously threaten crop productivity. When stresses coincide, resulting effects on plants can be distinct due to synergistic or antagonistic interactions. To elucidate how potato plants respond to single and combined stresses that resemble naturally occurring stress scenarios, five different treatments were imposed on a selected potato cultivar (Solanum tuberosum L., cv. Lady Rosetta) at the onset of tuberization, i.e. control, drought, heat, waterlogging, and combinations of heat, drought, and waterlogging stresses. Our analysis shows that waterlogging stress had the most detrimental effect on plant performance, leading to fast and drastic physiological responses related to stomatal closure, including a reduction in the quantum yield and efficiency of photosystem II and an increase in canopy temperature and water index. Under heat and combined stress treatments, the relative growth rate was reduced in the early phase of stress. Under drought and combined stresses, plant volume and photosynthetic performance dropped with an increased temperature and stomata closure in the late phase of stress. The combination of optimized stress treatment under defined environmental conditions together with selected phenotyping protocols allowed to reveal the dynamics of morphological and physiological responses to single and combined stresses. Here, a useful tool is presented for plant researchers looking to identify plant traits indicative of resilience to several climate change-related stresses.


Asunto(s)
Fenotipo , Solanum tuberosum , Estrés Fisiológico , Solanum tuberosum/fisiología , Estrés Fisiológico/fisiología , Sequías , Ensayos Analíticos de Alto Rendimiento/métodos
19.
J Exp Bot ; 63(4): 1751-61, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22213817

RESUMEN

Calcium has long been acknowledged as one of the most important signalling components in plants. Many abiotic and biotic stimuli are transduced into a cellular response by temporal and spatial changes in cellular calcium concentration and the calcium-sensitive protein aequorin has been exploited as a genetically encoded calcium indicator for the measurement of calcium in planta. The objective of this work was to generate a compatible set of aequorin expression plasmids for the generation of transgenic plant lines to measure changes in calcium levels in different cellular subcompartments. Aequorin was fused to different targeting peptides or organellar proteins as a means to localize it to the cytosol, the nucleus, the plasma membrane, and the mitochondria. Furthermore, constructs were designed to localize aequorin in the stroma as well as the inner and outer surface of the chloroplast envelope membranes. The modular set-up of the plasmids also allows the easy replacement of targeting sequences to include other compartments. An additional YFP-fusion was included to verify the correct subcellular localization of all constructs by laser scanning confocal microscopy. For each construct, pBin19-based binary expression vectors driven by the 35S or UBI10 promoter were made for Agrobacterium-mediated transformation. Stable Arabidopsis lines were generated and initial tests of several lines confirmed their feasibility to measure calcium signals in vivo.


Asunto(s)
Aequorina/biosíntesis , Aequorina/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Calcio/metabolismo , Brassica rapa/genética , Señalización del Calcio , Regulación de la Expresión Génica de las Plantas , Variación Genética , Plantas Modificadas Genéticamente , Plásmidos/genética , Transducción de Señal , Nicotiana/genética
20.
J Exp Bot ; 63(4): 1525-42, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22200666

RESUMEN

This review provides a comprehensive overview of the established and emerging roles that organelles play in calcium signalling. The function of calcium as a secondary messenger in signal transduction networks is well documented in all eukaryotic organisms, but so far existing reviews have hardly addressed the role of organelles in calcium signalling, except for the nucleus. Therefore, a brief overview on the main calcium stores in plants-the vacuole, the endoplasmic reticulum, and the apoplast-is provided and knowledge on the regulation of calcium concentrations in different cellular compartments is summarized. The main focus of the review will be the calcium handling properties of chloroplasts, mitochondria, and peroxisomes. Recently, it became clear that these organelles not only undergo calcium regulation themselves, but are able to influence the Ca(2+) signalling pathways of the cytoplasm and the entire cell. Furthermore, the relevance of recent discoveries in the animal field for the regulation of organellar calcium signals will be discussed and conclusions will be drawn regarding potential homologous mechanisms in plant cells. Finally, a short overview on bacterial calcium signalling is included to provide some ideas on the question where this typically eukaryotic signalling mechanism could have originated from during evolution.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Orgánulos/metabolismo , Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA