Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Carcinogenesis ; 44(1): 54-64, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36548952

RESUMEN

Loss of heterozygosity and promoter hypermethylation of APC is frequently observed in human endometrial cancer, which is the most common gynecological cancer in the USA, but its carcinogenic driver status in the endometrial epithelium has not been confirmed. We have identified a novel population of progenitor endometrial epithelial cells (EECs) in mice that express lysozyme M (LysM) and give rise to approximately 15% of all EECs in adult mice. LysM is a glycoside hydrolase that is encoded by Lyz2 and functions to protect cells from bacteria as part of the innate immune system. Its expression has been shown in a subset of hematopoietic stem cells and in specialized lung and small intestinal epithelial cells. Conditional deletion of Apc in LysM + EECs results in significantly more epithelial cells compared to wild-type mice. At 5 months of age, the ApccKO mice have enlarged uterine horns with pathology that is consistent with endometrial hyperplasia with cystic endometrial glands, non-villous luminal papillae and nuclear atypia. Nuclear accumulation of ß-catenin and ERα, both of which are known to induce endometrial hyperplasia, was observed in the EECs of the ApccKO mice. These results confirm that loss of APC in EECs can result in a phenotype similar to endometrial hyperplasia.


Asunto(s)
Hiperplasia Endometrial , Neoplasias Endometriales , Adulto , Femenino , Humanos , Ratones , Animales , Hiperplasia Endometrial/genética , Hiperplasia Endometrial/patología , Células Epiteliales/patología , Endometrio/patología , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Células Madre/metabolismo
2.
Reprod Biol Endocrinol ; 21(1): 43, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170094

RESUMEN

Endometrial epithelia are known to harbor cancer driver mutations in the absence of any pathologies, including mutations in PIK3CA. Insulin plays an important role in regulating uterine metabolism during pregnancy, and hyperinsulinemia is associated with conditions impacting fertility. Hyperinsulinemia also promotes cancer, but the direct action of insulin on mutated endometrial epithelial cells is unknown. Here, we treated 12Z endometriotic epithelial cells carrying the PIK3CAH1047R oncogene with insulin and examined transcriptomes by RNA-seq. While cells naively responded to insulin, the magnitude of differential gene expression (DGE) was nine times greater in PIK3CAH1047R cells, representing a synergistic effect between insulin signaling and PIK3CAH1047R expression. Interferon signaling and the unfolded protein response (UPR) were enriched pathways among affected genes. Insulin treatment in wild-type cells activated normal endoplasmic reticulum stress (ERS) response programs, while PIK3CAH1047R cells activated programs necessary to avoid ERS-induced apoptosis. PIK3CAH1047R expression alone resulted in overexpression (OE) of Viperin (RSAD2), which is involved in viral response and upregulated in the endometrium during early pregnancy. The transcriptional changes induced by insulin in PIK3CAH1047R cells were rescued by knockdown of Viperin, while Viperin OE alone was insufficient to induce a DGE response to insulin, suggesting that Viperin is necessary but not sufficient for the synergistic effect of PIK3CAH1047R and insulin treatment. We identified interferon signaling, viral response, and protein targeting pathways that are induced by insulin but dependent on Viperin in PIK3CAH1047R mutant cells. These results suggest that response to insulin signaling is altered in mutated endometriotic epithelial cells.


Asunto(s)
Hiperinsulinismo , Neoplasias , Femenino , Humanos , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Células Epiteliales/metabolismo , Insulina/farmacología , Insulina/genética , Interferones/genética , Mutación , Endometrio/metabolismo
3.
Reprod Biol Endocrinol ; 20(1): 163, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36424602

RESUMEN

Obesity impacts fertility and is positively correlated with endometrial hyperplasia and endometrial cancer occurrence. Endometrial epithelia often harbor disease driver-mutations, while endometrial stroma are highly regulative of neighboring epithelia. Here, we sought to determine distinct transcriptome changes occurring in individual cell types in the obese mouse uterus. Outbred CD-1 mice were fed high-fat or control diets for 18 weeks, estrous cycle staged, and endometrial epithelia, macrophages, and stroma isolated for transcriptomic analysis. High-fat diet mice displayed increased body mass and developed glucose intolerance, hyperinsulinemia, and fatty liver. Obese mouse epithelia displayed differential gene expression for genes related to innate immunity and leukocyte chemotaxis. The obese mouse stroma differentially expressed factors related to circadian rhythm, and expression of these genes correlated with glucose tolerance or body mass. We observed correlations between F4/80 + macrophage numbers, Cleaved Caspase 3 (CC3) apoptosis marker staining and glucose intolerance among obese mice, including a subgroup of obese mice with high CC3 + luminal epithelia. This subgroup displayed differential gene expression among all cell types, with pathways related to immune escape in epithelia and macrophages, while the stroma dysregulated pathways related to regulation of epithelia. These results suggest an important role for differential response of both the epithelia and stroma in their response to obesity, while macrophages are dysregulated in the context of apoptotic epithelia. The obesity-related gene expression programs in cells within the uterine microenvironment may influence the ability of the endometrium to function during pregnancy and influence disease pathogenesis.


Asunto(s)
Intolerancia a la Glucosa , Transcriptoma , Embarazo , Femenino , Ratones , Animales , Ratones Obesos , Obesidad/genética , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos
4.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807176

RESUMEN

Uterine fibroid tissues are often compared to their matched myometrium in an effort to understand their pathophysiology, but it is not clear whether the myometria of uterine fibroid patients represent truly non-disease control tissues. We analyzed the transcriptomes of myometrial samples from non-fibroid patients (M) and compared them with fibroid (F) and matched myometrial (MF) samples to determine whether there is a phenotypic difference between fibroid and non-fibroid myometria. Multidimensional scaling plots revealed that M samples clustered separately from both MF and F samples. A total of 1169 differentially expressed genes (DEGs) (false discovery rate < 0.05) were observed in the MF comparison with M. Overrepresented Gene Ontology terms showed a high concordance of upregulated gene sets in MF compared to M, particularly extracellular matrix and structure organization. Gene set enrichment analyses showed that the leading-edge genes from the TGFß signaling and inflammatory response gene sets were significantly enriched in MF. Overall comparison of the three tissues by three-dimensional principal component analyses showed that M, MF, and F samples clustered separately from each other and that a total of 732 DEGs from F vs. M were not found in the F vs. MF, which are likely understudied in the pathogenesis of uterine fibroids and could be key genes for future investigation. These results suggest that the transcriptome of fibroid-associated myometrium is different from that of non-diseased myometrium and that fibroid studies should consider using both matched myometrium and non-diseased myometrium as controls.


Asunto(s)
Leiomioma/genética , Miometrio/patología , Útero/patología , Adulto , Femenino , Perfilación de la Expresión Génica/métodos , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Leiomioma/patología , Persona de Mediana Edad , Miometrio/metabolismo , Fenotipo , Análisis de Componente Principal/métodos , Transcriptoma/genética , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Útero/metabolismo
5.
Hum Reprod ; 35(1): 44-57, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31913469

RESUMEN

STUDY QUESTION: Can endometrial stromal stem/progenitor cell markers, SUSD2 and CD146/CD140b, enrich for human myometrial and fibroid stem/progenitor cells? SUMMARY ANSWER: SUSD2 enriches for myometrial and fibroid cells that have mesenchymal stem cell (MSC) characteristics and can also be induced to decidualise. WHAT IS KNOWN ALREADY: Mesenchymal stem-like cells have been separately characterised in the endometrial stroma and myometrium and may contribute to diseases in their respective tissues. STUDY DESIGN, SIZE, DURATION: Normal myometrium, fibroids and endometrium were collected from hysterectomies with informed consent. Primary cells or tissues were used from at least three patient samples for each experiment. PARTICIPANTS/MATERIALS, SETTING, METHODS: Flow cytometry, immunohistochemistry and immunofluorescence were used to characterise tissues. In vitro colony formation in normoxic and hypoxic conditions, MSC lineage differentiation (osteogenic and adipogenic) and decidualisation were used to assess stem cell activity. Xenotransplantation into immunocompromised mice was used to determine in vivo stem-like activity. Endpoint measures included quantitative PCR, colony formation, trichrome, Oil Red O and alkaline phosphatase activity staining. MAIN RESULTS AND THE ROLE OF CHANCE: CD146+CD140b+ and/or SUSD2+ myometrial and fibroid cells were located in the perivascular region and formed more colonies in vitro compared to control cells and differentiated down adipogenic and osteogenic mesenchymal lineages in vitro. SUSD2+ myometrial cells had greater in vitro decidualisation potential, and SUSD2+ fibroid cells formed larger tumours in vivo compared to control cells. LARGE-SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Markers used in this study enrich for cells with stem/progenitor cell activity; however, they do not distinguish stem from progenitor cells. SUSD2+ myometrial cells express markers of decidualisation when treated in vitro, but in vivo assays are needed to fully demonstration their ability to decidualise. WIDER IMPLICATIONS OF THE FINDINGS: These results suggest a possible common MSC for the endometrial stroma and myometrium, which could be the tumour-initiating cell for uterine fibroids. STUDY FUNDING/COMPETING INTEREST(S): These studies were supported by NIH grants to JMT (R01OD012206) and to ALP (F32HD081856). The authors certify that we have no conflicts of interest to disclose.


Asunto(s)
Leiomioma , Células Madre Mesenquimatosas , Animales , Endometrio , Femenino , Humanos , Ratones , Miometrio , Células Madre , Células del Estroma
6.
Proc Natl Acad Sci U S A ; 114(13): 3445-3450, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28289208

RESUMEN

Nearly all older men will experience lower urinary tract symptoms associated with benign prostatic hyperplasia (BPH), the etiology of which is not well understood. We have generated Stk11CKO mice by conditional deletion of the liver kinase B1 (LKB1) tumor suppressor gene, Stk11 (serine threonine kinase 11), in the fetal Müllerian duct mesenchyme (MDM), the caudal remnant of which is thought to be assimilated by the urogenital sinus primordial mesenchyme in males during fetal development. We show that MDM cells contribute to the postnatal stromal cells at the dorsal aspect of the prostatic urethra by lineage tracing. The Stk11CKO mice develop prostatic hyperplasia with bladder outlet obstruction, most likely because of stromal expansion. The stromal areas from prostates of Stk11CKO mice, with or without significant expansion, were estrogen receptor positive, which is consistent with both MD mesenchyme-derived cells and the purported importance of estrogen receptors in BPH development and/or progression. In some cases, stromal hyperplasia was admixed with epithelial metaplasia, sometimes with keratin pearls, consistent with squamous cell carcinomas. Mice with conditional deletion of both Stk11 and Pten developed similar features as the Stk11CKO mice, but at a highly accelerated rate, often within the first few months after birth. Western blot analyses showed that the loss of LKB1 and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) induces activation of the phospho-5' adenosine monophosphate-activated protein kinase and phospho-AKT serine/threonine kinase 1 signaling pathways, as well as increased total and active ß-catenin. These results suggest that activation of these signaling pathways can induce hyperplasia of the MD stroma, which could play a significant role in the etiology of human BPH.


Asunto(s)
Eliminación de Gen , Mesodermo/metabolismo , Conductos Paramesonéfricos/metabolismo , Hiperplasia Prostática/genética , Proteínas Serina-Treonina Quinasas/genética , Uretra/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Carcinogénesis , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patología , Proteínas Serina-Treonina Quinasas/metabolismo
7.
J Cell Sci ; 129(24): 4576-4591, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27875275

RESUMEN

Induction of pluripotency in differentiated cells through the exogenous expression of the transcription factors Oct4, Sox2, Klf4 and cellular Myc involves reprogramming at the epigenetic level. Histones and their metabolism governed by histone chaperones constitute an important regulator of epigenetic control. We hypothesized that histone chaperones facilitate or inhibit the course of reprogramming. For the first time, we report here that the downregulation of histone chaperone Aprataxin PNK-like factor (APLF) promotes reprogramming by augmenting the expression of E-cadherin (Cdh1), which is implicated in the mesenchymal-to-epithelial transition (MET) involved in the generation of induced pluripotent stem cells (iPSCs) from mouse embryonic fibroblasts (MEFs). Downregulation of APLF in MEFs expedites the loss of the repressive MacroH2A.1 (encoded by H2afy) histone variant from the Cdh1 promoter and enhances the incorporation of active histone H3me2K4 marks at the promoters of the pluripotency genes Nanog and Klf4, thereby accelerating the process of cellular reprogramming and increasing the efficiency of iPSC generation. We demonstrate a new histone chaperone (APLF)-MET-histone modification cohort that functions in the induction of pluripotency in fibroblasts. This regulatory axis might provide new mechanistic insights into perspectives of epigenetic regulation involved in cancer metastasis.


Asunto(s)
Proteínas Portadoras/metabolismo , Fibroblastos/metabolismo , Chaperonas de Histonas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Cadherinas/genética , Cadherinas/metabolismo , Puntos de Control del Ciclo Celular/genética , Diferenciación Celular/genética , Reprogramación Celular/genética , Ensayo de Unidades Formadoras de Colonias , Reparación del ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Regulación hacia Abajo/genética , Embrión de Mamíferos/citología , Células Epiteliales/citología , Femenino , Fibroblastos/citología , Técnicas de Silenciamiento del Gen , Células HEK293 , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Factor 4 Similar a Kruppel , Lisina/metabolismo , Masculino , Mesodermo/citología , Metilación , Ratones , Ratones Endogámicos C57BL , Proteínas de Unión a Poli-ADP-Ribosa , Regiones Promotoras Genéticas/genética , Regulación hacia Arriba/genética
8.
Dev Biol ; 386(1): 227-36, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24362065

RESUMEN

A key event during mammalian sexual development is regression of the Müllerian ducts (MDs) in the bipotential urogenital ridges (UGRs) of fetal males, which is caused by the expression of Müllerian inhibiting substance (MIS) in the Sertoli cells of the differentiating testes. The paracrine signaling mechanisms involved in MD regression are not completely understood, particularly since the receptor for MIS, MISR2, is expressed in the mesenchyme surrounding the MD, but regression occurs in both the epithelium and mesenchyme. Microarray analysis comparing MIS signaling competent and Misr2 knockout embryonic UGRs was performed to identify secreted factors that might be important for MIS-mediated regression of the MD. A seven-fold increase in the expression of Wif1, an inhibitor of WNT/ß-catenin signaling, was observed in the Misr2-expressing UGRs. Whole mount in situ hybridization of Wif1 revealed a spatial and temporal pattern of expression consistent with Misr2 during the window of MD regression in the mesenchyme surrounding the MD epithelium that was absent in both female UGRs and UGRs knocked out for Misr2. Knockdown of Wif1 expression in male UGRs by Wif1-specific siRNAs beginning on embryonic day 13.5 resulted in MD retention in an organ culture assay, and exposure of female UGRs to added recombinant human MIS induced Wif1 expression in the MD mesenchyme. Knockdown of Wif1 led to increased expression of ß-catenin and its downstream targets TCF1/LEF1 in the MD mesenchyme and to decreased apoptosis, resulting in partial to complete retention of the MD. These results strongly suggest that WIF1 secretion by the MD mesenchyme plays a role in MD regression in fetal males.


Asunto(s)
Hormona Antimülleriana/metabolismo , Proteínas de la Matriz Extracelular/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Conductos Paramesonéfricos/embriología , Proteínas Adaptadoras Transductoras de Señales , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos B/metabolismo , Femenino , Perfilación de la Expresión Génica , Masculino , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Conductos Paramesonéfricos/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Interferente Pequeño/metabolismo , Receptores de Péptidos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteínas Recombinantes/metabolismo , Células de Sertoli/metabolismo , Transducción de Señal , Factores de Tiempo
10.
PLoS Genet ; 8(8): e1002906, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22916036

RESUMEN

Germline mutations of the Liver Kinase b1 (LKB1/STK11) tumor suppressor gene have been linked to Peutz-Jeghers Syndrome (PJS), an autosomal-dominant, cancer-prone disorder in which patients develop neoplasms in several organs, including the oviduct, ovary, and cervix. We have conditionally deleted Lkb1 in Müllerian duct mesenchyme-derived cells of the female reproductive tract and observed expansion of the stromal compartment and hyperplasia and/or neoplasia of adjacent epithelial cells throughout the reproductive tract with paratubal cysts and adenomyomas in oviducts and, eventually, endometrial cancer. Examination of the proliferation marker phospho-histone H3 and mammalian Target Of Rapamycin Complex 1 (mTORC1) pathway members revealed increased proliferation and mTORC1 activation in stromal cells of both the oviduct and uterus. Treatment with rapamycin, an inhibitor of mTORC1 activity, decreased tumor burden in adult Lkb1 mutant mice. Deletion of the genes for Tuberous Sclerosis 1 (Tsc1) or Tsc2, regulators of mTORC1 that are downstream of LKB1 signaling, in the oviductal and uterine stroma phenocopies some of the defects observed in Lkb1 mutant mice, confirming that dysregulated mTORC1 activation in the Lkb1-deleted stroma contributes to the phenotype. Loss of PTEN, an upstream regulator of mTORC1 signaling, along with Lkb1 deletion significantly increased tumor burden in uteri and induced tumorigenesis in the cervix and vagina. These studies show that LKB1/TSC1/TSC2/mTORC1 signaling in mesenchymal cells is important for the maintenance of epithelial integrity and suppression of carcinogenesis in adjacent epithelial cells. Because similar changes in the stromal population are also observed in human oviductal/ovarian adenoma and endometrial adenocarcinoma patients, we predict that dysregulated mTORC1 activity by upstream mechanisms similar to those described in these model systems contributes to the pathogenesis of these human diseases.


Asunto(s)
Adenoma/genética , Neoplasias Endometriales/genética , Fosfohidrolasa PTEN/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas/genética , Proteínas Supresoras de Tumor/genética , Proteínas Quinasas Activadas por AMP , Adenoma/tratamiento farmacológico , Adenoma/patología , Animales , Cuello del Útero/efectos de los fármacos , Cuello del Útero/metabolismo , Cuello del Útero/patología , Modelos Animales de Enfermedad , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/patología , Endometrio/efectos de los fármacos , Endometrio/metabolismo , Endometrio/patología , Femenino , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Ratones , Complejos Multiproteicos , Ovario/efectos de los fármacos , Ovario/metabolismo , Ovario/patología , Oviductos/efectos de los fármacos , Oviductos/metabolismo , Oviductos/patología , Fosfohidrolasa PTEN/deficiencia , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Sirolimus/administración & dosificación , Serina-Treonina Quinasas TOR , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Proteínas Supresoras de Tumor/deficiencia
11.
Carcinogenesis ; 35(3): 546-53, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24170201

RESUMEN

Epithelial ovarian cancer presents mostly with serous, endometrioid or mucinous histology but is treated as a single disease. The development of histotype-specific therapy has been challenging because of the relative lack of studies attributing disrupted pathways to a distinct histotype differentiation. mTOR activation is frequently associated with poor prognosis in serous ovarian cancer, which is the most common and most deadly histotype. However, the mechanisms dysregulating mTOR in the pathogenesis of ovarian cancer are unknown. We detected copy number loss and correlated lower expression levels of LKB1, TSC1, TSC2 and PTEN tumor suppressor genes for upstream regulators of mTOR activity in up to 80% in primary ovarian serous tumor databases, with LKB1 allelic loss-predominant. Reduced LKB1 protein was usually associated with increased mTOR activity in both serous ovarian cancer cell lines and primary tumors. Conditional deletion of Lkb1 in murine ovarian surface epithelial (OSE) cells caused papillary hyperplasia and shedding but not tumors. Simultaneous deletion of Lkb1 and Pten, however, led to development of high-grade ovarian serous histotype tumors with 100% penetrance that expressed WT1, ERα, PAX8, TP53 and cytokeratin 8, typical markers used in the differential diagnosis of serous ovarian cancer. Neither hysterectomy nor salpingectomy interfered with progression of ovarian tumorigenesis, suggesting that neither uterine nor Fallopian tube epithelial cells were contributing to tumorigenesis. These results implicate LKB1 loss in the OSE in the pathogenesis of serous ovarian cancer and provide a compelling rationale for investigating the therapeutic potential of targeting LKB1 signaling in patients with this deadly disease.


Asunto(s)
Genes Supresores de Tumor , Neoplasias Ováricas/genética , Fosfohidrolasa PTEN/genética , Proteínas Serina-Treonina Quinasas/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Femenino , Humanos , Neoplasias Ováricas/patología
12.
Hum Mol Genet ; 21(20): 4394-405, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22791749

RESUMEN

Male patients with Peutz-Jeghers syndrome (PJS) have defective spermatogenesis and are at increased risk of developing Sertoli cell tumors. Mutations in the Liver Kinase B1 (LKB1/STK11) gene are associated with the pathogenesis of PJS and have been identified in non-PJS patients with sporadic testicular cancers. The mechanisms controlled by LKB1 signaling in Sertoli cell functions and testicular biology have not been described. We have conditionally deleted the Lkb1 gene (Lkb1(cko)) in somatic testicular cells to define the molecular mechanisms involved in the development of the testicular phenotype observed in PJS patients. Focal vacuolization in some of the seminiferous tubules was observed in 4-week-old mutant testes but germ cell development appeared to be normal. However, similar to PJS patients, we observed progressive germ cell loss and Sertoli cell only tubules in Lkb1(cko) testes from mice older than 10 weeks, accompanied by defects in Sertoli cell polarity and testicular junctional complexes and decreased activation of the MAP/microtubule affinity regulating and focal adhesion kinases. Suppression of AMP kinase and activation of mammalian target of rapamycin (mTOR) signaling were also observed in Lkb1(cko) testes. Loss of Tsc1 or Tsc2 copies the progressive Lkb1(cko) phenotype, suggesting that dysregulated activation of mTOR contributes to the pathogenesis of the Lkb1(cko) testicular phenotype. Pten(cko) mice had a normal testicular phenotype, which could be explained by the comparative lack of mTOR activation detected. These studies describe the importance of LKB1 signaling in testicular biology and the possible molecular mechanisms driving the pathogenesis of the testicular defects observed in PJS patients.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Polaridad Celular/genética , Proteínas Serina-Treonina Quinasas/genética , Células de Sertoli/metabolismo , Transducción de Señal , Espermatogénesis/genética , Serina-Treonina Quinasas TOR/genética , Proteínas Supresoras de Tumor/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Masculino , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo
13.
Mol Hum Reprod ; 20(11): 1126-34, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25189766

RESUMEN

Uterine leiomyomata are the most common tumors found in the female reproductive tract. Despite the high prevalence and associated morbidities of these benign tumors, little is known about the molecular basis of uterine leiomyoma development and progression. Loss of the Tuberous Sclerosis 2 (TSC2) tumor suppressor has been proposed as a mechanism important for the etiology of uterine leiomyomata based on the Eker rat model. However, conflicting evidence showing increased TSC2 expression has been reported in human uterine leiomyomata, suggesting that TSC2 might not be involved in the pathogenesis of this disorder. We have produced mice with conditional deletion of the Tsc2 gene in the myometria to determine whether loss of TSC2 leads to leiomyoma development in murine uteri. Myometrial hyperplasia and increased collagen deposition was observed in Tsc2(cKO) mice compared with control mice, but no leiomyomata were detected by post-natal week 24. Increased signaling activity of mammalian target of rapamycin complex 1, which is normally repressed by TSC2, was also detected in the myometria of Tsc2(cKO) mice. Treatment of the mutant mice with rapamycin significantly inhibited myometrial expansion, but treatment with the progesterone receptor modulator, mifepristone, did not. The ovaries of the Tsc2(cKO) mice appeared normal, but half the mice were infertile and most of the other half became infertile after a single litter, which was likely due to oviductal blockage. Our study shows that although TSC2 loss alone does not lead to leiomyoma development, it does lead to myometrial hyperplasia and fibrosis.


Asunto(s)
Conductos Paramesonéfricos/patología , Miometrio/patología , Proteínas Supresoras de Tumor/genética , Animales , Femenino , Fertilidad/genética , Fibrosis/genética , Eliminación de Gen , Hiperplasia/genética , Leiomioma/genética , Leiomioma/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Mesodermo/patología , Ratones , Complejos Multiproteicos/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa
14.
bioRxiv ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712187

RESUMEN

Uterine fibroids are prevalent benign tumors in women that exhibit considerable heterogeneity in clinical presentation and molecular characteristics, necessitating a deeper understanding of their etiology and pathogenesis. HMGA2 overexpression has been associated with fibroid development, yet its precise role remains elusive. Mutations in fibroids are mutually exclusive and largely clonal, suggesting that tumors originate from a single mutant cell. We explored a possible role for HMGA2 overexpression in differentiated myometrial cells, hypothesizing its potential to induce a stem cell-like or dedifferentiating phenotype and drive fibroid development. Myometrial cells were immortalized and transduced with an HMGA2 lentivirus to produce HMGA2hi cells. In vitro stem cell assays were conducted and RNA from HMGA2hi and control cells and fibroid-free myometrial and HMGA2 fibroid (HMGA2F) tissues were submitted for RNA-sequencing. HMGA2hi cells have enhanced self-renewal capacity, decreased proliferation, and have a greater ability to differentiate into other mesenchymal cell types. HMGA2hi cells exhibit a stem cell-like signature and share transcriptomic similarities with HMGA2F. Moreover, dysregulated extracellular matrix pathways are observed in both HMGA2hi cells and HMGA2F. Our findings suggest that HMGA2 overexpression drives myometrial cells to dedifferentiate into a more plastic phenotype and underscore a pivotal role for HMGA2 in fibroid pathogenesis.

15.
Carcinogenesis ; 34(4): 893-901, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23276799

RESUMEN

Epithelial ovarian cancer is a heterogeneous disease that is subdivided into five major histotypes but the mechanisms driving their differentiation are not clear. Mutations in adenomatous polyposis coli (APC) and ß-catenin are commonly observed in the human ovarian endometrioid adenocarcinoma (OEA) patients. However, the mechanisms subsequent to APC deletion in ovarian tumorigenesis have not been well characterized. We have conditionally deleted APC in the murine ovarian surface epithelium (OSE) and showed that its loss leads to development of epithelial inclusion cysts. High-grade OEAs with tightly packed villoglandular histology were observed in older APC-deleted mice. Phosphatase and tensin homolog (PTEN) expression was elevated in the early lesions but lost after progression to the more advanced tumors. Knockdown of APC or expression of a gain-of-function ß-catenin similarly induced human OSE cells to develop tumors with endometrioid histology in xenografts. Expression of HOXA10 was induced in both the advanced APC-deleted murine tumors and in the tumor xenografts of human OSE cells with knocked-down APC. These results show that reduced APC activity is sufficient to induce formation of epithelial inclusion cysts and support OEA development and suggest that induced HOXA10 expression and loss of PTEN are key mechanisms driving endometrioid histotype differentiation and progression.


Asunto(s)
Poliposis Adenomatosa del Colon/genética , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/patología , Proteínas de Homeodominio/genética , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Ováricas/genética , Fosfohidrolasa PTEN/genética , Adenocarcinoma/genética , Animales , Carcinoma Endometrioide/metabolismo , Carcinoma Epitelial de Ovario , Diferenciación Celular , Transformación Celular Neoplásica/genética , Progresión de la Enfermedad , Femenino , Proteínas Homeobox A10 , Humanos , Ratones , Ratones Noqueados , Trasplante de Neoplasias , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/patología , Ovario/patología , Trasplante Heterólogo , Células Tumorales Cultivadas , Vía de Señalización Wnt/genética , beta Catenina/genética
16.
Proc Natl Acad Sci U S A ; 107(37): 16142-7, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20805501

RESUMEN

Müllerian-inhibiting substance (MIS), which is produced by fetal Sertoli cells shortly after commitment of the bipotential gonads to testicular differentiation, causes Müllerian duct (MD) regression. In the fetal female gonads, MIS is not expressed and the MDs will differentiate into the internal female reproductive tract. We have investigated whether dysregulated ß-catenin activity affects MD regression by expressing a constitutively activated nuclear form of ß-catenin in the MD mesenchyme. We show that constitutively activated (CA) ß-catenin causes focal retention of MD tissue in the epididymides and vasa deferentia. In adult mutant mice, the retained MD tissues express α-smooth muscle actin and desmin, which are markers for uterine differentiation. MD retention inhibited the folding complexity of the developing epididymides and usually led to obstructive azoospermia by spermatoceles. The MDs of urogenital ridges from mutant female embryos showed less regression with added MIS in organ culture compared with control MDs when analyzed by whole mount in situ hybridization for Wnt7a as a marker for the MD epithelium. CA ß-catenin did not appear to affect expression of either MIS in the embryonic testes or its type II receptor (AMHR2) in the MD mesenchyme nor did it inhibit pSmad1/5/8 nuclear accumulation, suggesting that dysregulated ß-catenin must inhibit MD regression independently of MIS signaling. These studies suggest that dysregulated Wnt/ß-catenin signaling in the MD mesenchyme might also be a contributing factor in persistent Müllerian duct syndrome, a form of male pseudohermaphroditism, and development of spermatoceles.


Asunto(s)
Mesodermo/metabolismo , Conductos Paramesonéfricos/metabolismo , beta Catenina/metabolismo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Técnicas de Cultivo de Tejidos , beta Catenina/genética
17.
Forensic Sci Res ; 8(3): 219-229, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38221969

RESUMEN

Children represent a specific group of road traffic accident (RTA) victims. Performing a personal injury assessment (PIA) on a child presents a significant challenge, especially when assessing permanent disabilities and needs. However, medico-legal recommendations for PIA in such cases are lacking. The main objective of this study was to analyse the differences between children and a young- and middle-aged adult population of RTA victims to contribute to the development of relevant guidelines. Secondary objectives were to identify and characterize specifics of children's posttraumatic damages regarding: (i) temporary and permanent outcomes; and (ii) medico-legal damage parameters in the Portuguese context. We performed a retrospective study of RTA victims by comparing two groups (n = 114 each) matched for acute injury severity (SD = 0.01): G1 (children) and G2 (young- and middle-aged adults). Logistic regression was used to estimate the odds ratios. G1 presented a greater chance of evolving without or with less severe body, functional and situational outcomes (three-dimensional assessment methodology), and with lower permanent functional disability values than G2. Our findings suggest that childhood trauma generally has a better prognosis than trauma in young- and middle-aged adults. This study generated evidence on the subject and highlighted the most significant difficulties encountered by medico-legal experts when performing PIA in children. Key points: This retrospective study of PIA in child victims of RTA in Portugal considered outcomes in victims' real-life situations.Several significant differences between children and young- and middle-aged adults were observed.Children's cases presented better results in terms of the severity of body, functional and situational outcomes, and permanent damage parameters.The average time between the RTA and final PIA date and the consolidation time were longer for children because of the need to wait for the Children's next growth phase or final pubertal period (as applicable), which increased the time for PIA conclusion.There were several difficulties in the medical-legal evaluation of children's cases, which was a complex process because the trauma affected them in their growth phase.

18.
Reprod Sci ; 30(5): 1616-1624, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36418534

RESUMEN

Fibroids, benign tumors of the myometrium, are the most common tumors in women and are associated with spontaneous abortion, preterm birth, placenta abruption, and infertility, among others. The incidence of fibroids in reproductive aged women is 20-89%. Fibroids are characterized by high production of extracellular matrix (ECM), particularly collagens, which play a role in their growth. However, their pathogenesis is poorly understood. Recently, we and others have found periostin (POSTN), a regulatory ECM protein, to be overexpressed in the majority of fibroids analyzed. Periostin is an ECM protein that is a critical regulator and well-established biomarker for fibrosis in tissues such as the lung, skin, and kidney. Our hypothesis was that periostin plays a role in the fibrotic transition of myometrial cells to fibroid cells. To test this, we evaluated the effects of POSTN overexpression in myometrial cells. Telomerase-immortalized myometrial cells were transduced with control or POSTN-overexpression lentivirus particles, generating one control (dCas9-Mock) and two overexpression (dCas9-POSTN-01, dCas9-POSTN-02) cell lines. Overexpression of POSTN in immortalized myometrial cells resulted in a change in phenotype consistent with fibroid cells. They upregulated expression of key fibroid genes and had increased proliferation, adhesion, and migration in vitro. Here, we show a potential role for periostin in the transition of myometrial cells to fibroid cells, giving rationale for future investigation into the role of periostin in fibroid pathogenesis and its potential as a therapeutic target.


Asunto(s)
Leiomioma , Nacimiento Prematuro , Neoplasias Uterinas , Recién Nacido , Humanos , Femenino , Miometrio/metabolismo , Nacimiento Prematuro/metabolismo , Leiomioma/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Colágeno/metabolismo , Neoplasias Uterinas/metabolismo
19.
Commun Biol ; 6(1): 686, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400623

RESUMEN

Myometrial stem/progenitor cells (MyoSPCs) have been proposed as the cells of origin for uterine fibroids, but the identity of the MyoSPC has not been well established. We previously identified SUSD2 as a possible MyoSPC marker, but the relatively poor enrichment in stem cell characteristics of SUSD2+ over SUSD2- cells compelled us to find better markers. We combined bulk RNA-seq of SUSD2+/- cells with single cell RNA-seq to identify markers for MyoSPCs. We observed seven distinct cell clusters within the myometrium, with the vascular myocyte cluster most highly enriched for MyoSPC characteristics and markers. CRIP1 expression was found highly upregulated by both techniques and was used as a marker to sort CRIP1+/PECAM1- cells that were both enriched for colony forming potential and able to differentiate into mesenchymal lineages, suggesting that CRIP1+/PECAM1- cells could be used to better study the etiology of uterine fibroids.


Asunto(s)
Leiomioma , Miometrio , Femenino , Humanos , Miometrio/metabolismo , Cisteína/metabolismo , Células Madre/metabolismo , Leiomioma/genética , Leiomioma/metabolismo
20.
bioRxiv ; 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36993447

RESUMEN

Myometrial stem/progenitor cells (MyoSPCs) have been proposed as the cells of origin for uterine fibroids, which are benign tumors that develop in the myometrium of most reproductive age women, but the identity of the MyoSPC has not been well established. We previously identified SUSD2 as a possible MyoSPC marker, but the relatively poor enrichment in stem cell characteristics of SUSD2+ over SUSD2- cells compelled us to find better discerning markers for more rigorous downstream analyses. We combined bulk RNA-seq of SUSD2+/- cells with single cell RNA-seq to identify markers capable of further enriching for MyoSPCs. We observed seven distinct cell clusters within the myometrium, with the vascular myocyte cluster most highly enriched for MyoSPC characteristics and markers, including SUSD2. CRIP1 expression was found highly upregulated in both techniques and was used as a marker to sort CRIP1+/PECAM1- cells that were both enriched for colony forming potential and able to differentiate into mesenchymal lineages, suggesting that CRIP1+/PECAM1- cells could be used to better study the etiology of uterine fibroids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA