Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
New Phytol ; 229(1): 351-369, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32810889

RESUMEN

Cell and tissue polarization is fundamental for plant growth and morphogenesis. The polar, cellular localization of Arabidopsis PIN-FORMED (PIN) proteins is crucial for their function in directional auxin transport. The clustering of PIN polar cargoes within the plasma membrane has been proposed to be important for the maintenance of their polar distribution. However, the more detailed features of PIN clusters and the cellular requirements of cargo clustering remain unclear. Here, we characterized PIN clusters in detail by means of multiple advanced microscopy and quantification methods, such as 3D quantitative imaging or freeze-fracture replica labeling. The size and aggregation types of PIN clusters were determined by electron microscopy at the nanometer level at different polar domains and at different developmental stages, revealing a strong preference for clustering at the polar domains. Pharmacological and genetic studies revealed that PIN clusters depend on phosphoinositol pathways, cytoskeletal structures and specific cell-wall components as well as connections between the cell wall and the plasma membrane. This study identifies the role of different cellular processes and structures in polar cargo clustering and provides initial mechanistic insight into the maintenance of polarity in plants and other systems.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Polaridad Celular , Análisis por Conglomerados , Ácidos Indolacéticos , Proteínas de Transporte de Membrana
2.
PLoS Genet ; 14(1): e1007177, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29377885

RESUMEN

Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17- and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain- and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Polaridad Celular , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Factores de Transcripción/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Polaridad Celular/genética , Retroalimentación Fisiológica/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Proteínas de Transporte de Membrana/genética , Análisis por Micromatrices , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente
3.
J Cell Sci ; 131(2)2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-28687624

RESUMEN

Coordinated cell polarization in developing tissues is a recurrent theme in multicellular organisms. In plants, a directional distribution of the plant hormone auxin is at the core of many developmental programs. A feedback regulation of auxin on the polarized localization of PIN auxin transporters in individual cells has been proposed as a self-organizing mechanism for coordinated tissue polarization, but the molecular mechanisms linking auxin signalling to PIN-dependent auxin transport remain unknown. We used a microarray-based approach to find regulators of the auxin-induced PIN relocation in Arabidopsis thaliana root, and identified a subset of a family of phosphatidylinositol transfer proteins (PITPs), the PATELLINs (PATLs). Here, we show that PATLs are expressed in partially overlapping cell types in different tissues going through mitosis or initiating differentiation programs. PATLs are plasma membrane-associated proteins accumulated in Arabidopsis embryos, primary roots, lateral root primordia and developing stomata. Higher order patl mutants display reduced PIN1 repolarization in response to auxin, shorter root apical meristem, and drastic defects in embryo and seedling development. This suggests that PATLs play a redundant and crucial role in polarity and patterning in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Desarrollo de la Planta , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Tipificación del Cuerpo/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Proteínas de Transporte de Membrana/genética , Mutación/genética , Fenotipo , Filogenia , Desarrollo de la Planta/efectos de los fármacos , Epidermis de la Planta/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Semillas/efectos de los fármacos , Semillas/genética
4.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333760

RESUMEN

Soil salinity is a key problem for crop production worldwide. High salt concentration in soil negatively modulates plant growth and development. In roots, salinity affects the growth and development of both primary and lateral roots. The phytohormone auxin regulates various developmental processes during the plant's life cycle, including several aspects of root architecture. Auxin signaling involves the perception by specialized receptors which module several regulatory pathways. Despite their redundancy, previous studies have shown that their functions can also be context-specific depending on tissue, developmental or environmental cues. Here we show that the over-expression of Auxin Signaling F-Box 3 receptor results in an increased resistance to salinity in terms of root architecture and germination. We also studied possible downstream signaling components to further characterize the role of auxin in response to salt stress. We identify the transcription factor SZF1 as a key component in auxin-dependent salt stress response through the regulation of NAC4. These results give lights of an auxin-dependent mechanism that leads to the modulation of root system architecture in response to salt identifying a hormonal cascade important for stress response.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Germinación/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Raíces de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Estrés Salino/genética , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Germinación/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/genética , Meristema/efectos de los fármacos , Meristema/genética , Meristema/metabolismo , Mutación , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Receptores de Superficie Celular/genética , Salinidad , Estrés Salino/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética , Regulación hacia Arriba
5.
Planta ; 245(4): 717-728, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27999988

RESUMEN

MAIN CONCLUSION: AtPLC2 is an essential gene in Arabidopsis, since it is required for female gametogenesis and embryo development. AtPLC2 might play a role in cell division during embryo-sac development and early embryogenesis. Phosphoinositide-specific phospholipase C (PI-PLC) plays an important role in signal transduction during plant development and in the response to various biotic- and abiotic stresses. The Arabidopsis PI-PLC gene family is composed of nine members, named PLC1 to PLC9. Here, we report that PLC2 is involved in female gametophyte development and early embryogenesis. Using two Arabidopsis allelic T-DNA insertion lines with different phenotypic penetrations, we observed both female gametophytic defects and aberrant embryos. For the plc2-1 mutant (Ws background), no homozygous plants could be recovered in the offspring from self-pollinated plants. Nonetheless, plc2-1 hemizygous mutants are affected in female gametogenesis, showing embryo sacs arrested at early developmental stages. Allelic hemizygous plc2-2 mutant plants (Col-0 background) present reduced seed set and embryos arrested at the pre-globular stage with abnormal patterns of cell division. A low proportion (0.8%) of plc2-2 homozygous mutants was found to escape lethality and showed morphological defects and disrupted megagametogenesis. PLC2-promoter activity was observed during early megagametogenesis, and after fertilization in the embryo proper. Immunolocalization studies in early stage embryos revealed that PLC2 is restricted to the plasma membrane. Altogether, these results establish a role for PLC2 in both reproductive- and embryo development, presumably by controlling mitosis and/or the formation of cell-division planes.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Gametogénesis en la Planta/fisiología , Semillas/crecimiento & desarrollo , Fosfolipasas de Tipo C/fisiología , Arabidopsis/enzimología , Arabidopsis/ultraestructura , Western Blotting , Glucuronidasa/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Óvulo Vegetal/enzimología , Óvulo Vegetal/fisiología , Óvulo Vegetal/ultraestructura , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/enzimología
6.
Plant Physiol ; 171(3): 1965-82, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27208248

RESUMEN

In contrast with the wealth of recent reports about the function of µ-adaptins and clathrin adaptor protein (AP) complexes, there is very little information about the motifs that determine the sorting of membrane proteins within clathrin-coated vesicles in plants. Here, we investigated putative sorting signals in the large cytosolic loop of the Arabidopsis (Arabidopsis thaliana) PIN-FORMED1 (PIN1) auxin transporter, which are involved in binding µ-adaptins and thus in PIN1 trafficking and localization. We found that Phe-165 and Tyr-280, Tyr-328, and Tyr-394 are involved in the binding of different µ-adaptins in vitro. However, only Phe-165, which binds µA(µ2)- and µD(µ3)-adaptin, was found to be essential for PIN1 trafficking and localization in vivo. The PIN1:GFP-F165A mutant showed reduced endocytosis but also localized to intracellular structures containing several layers of membranes and endoplasmic reticulum (ER) markers, suggesting that they correspond to ER or ER-derived membranes. While PIN1:GFP localized normally in a µA (µ2)-adaptin mutant, it accumulated in big intracellular structures containing LysoTracker in a µD (µ3)-adaptin mutant, consistent with previous results obtained with mutants of other subunits of the AP-3 complex. Our data suggest that Phe-165, through the binding of µA (µ2)- and µD (µ3)-adaptin, is important for PIN1 endocytosis and for PIN1 trafficking along the secretory pathway, respectively.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Señales de Clasificación de Proteína , Subunidades mu de Complejo de Proteína Adaptadora/genética , Subunidades mu de Complejo de Proteína Adaptadora/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clatrina/metabolismo , Citosol/metabolismo , Endocitosis/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas de Transporte de Membrana/genética , Mutación , Fenilalanina/genética , Plantas Modificadas Genéticamente , Señales de Clasificación de Proteína/genética , Transporte de Proteínas
7.
Plant Cell ; 26(5): 2114-2128, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24876254

RESUMEN

Cell polarity manifested by asymmetric distribution of cargoes, such as receptors and transporters, within the plasma membrane (PM) is crucial for essential functions in multicellular organisms. In plants, cell polarity (re)establishment is intimately linked to patterning processes. Despite the importance of cell polarity, its underlying mechanisms are still largely unknown, including the definition and distinctiveness of the polar domains within the PM. Here, we show in Arabidopsis thaliana that the signaling membrane components, the phosphoinositides phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] as well as PtdIns4P 5-kinases mediating their interconversion, are specifically enriched at apical and basal polar plasma membrane domains. The PtdIns4P 5-kinases PIP5K1 and PIP5K2 are redundantly required for polar localization of specifically apical and basal cargoes, such as PIN-FORMED transporters for the plant hormone auxin. As a consequence of the polarity defects, instructive auxin gradients as well as embryonic and postembryonic patterning are severely compromised. Furthermore, auxin itself regulates PIP5K transcription and PtdIns4P and PtdIns(4,5)P2 levels, in particular their association with polar PM domains. Our results provide insight into the polar domain-delineating mechanisms in plant cells that depend on apical and basal distribution of membrane lipids and are essential for embryonic and postembryonic patterning.

8.
Proc Natl Acad Sci U S A ; 111(7): 2818-23, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550313

RESUMEN

Phosphatidylinositol (PtdIns) is a structural phospholipid that can be phosphorylated into various lipid signaling molecules, designated polyphosphoinositides (PPIs). The reversible phosphorylation of PPIs on the 3, 4, or 5 position of inositol is performed by a set of organelle-specific kinases and phosphatases, and the characteristic head groups make these molecules ideal for regulating biological processes in time and space. In yeast and mammals, PtdIns3P and PtdIns(3,5)P2 play crucial roles in trafficking toward the lytic compartments, whereas the role in plants is not yet fully understood. Here we identified the role of a land plant-specific subgroup of PPI phosphatases, the suppressor of actin 2 (SAC2) to SAC5, during vacuolar trafficking and morphogenesis in Arabidopsis thaliana. SAC2-SAC5 localize to the tonoplast along with PtdIns3P, the presumable product of their activity. In SAC gain- and loss-of-function mutants, the levels of PtdIns monophosphates and bisphosphates were changed, with opposite effects on the morphology of storage and lytic vacuoles, and the trafficking toward the vacuoles was defective. Moreover, multiple sac knockout mutants had an increased number of smaller storage and lytic vacuoles, whereas extralarge vacuoles were observed in the overexpression lines, correlating with various growth and developmental defects. The fragmented vacuolar phenotype of sac mutants could be mimicked by treating wild-type seedlings with PtdIns(3,5)P2, corroborating that this PPI is important for vacuole morphology. Taken together, these results provide evidence that PPIs, together with their metabolic enzymes SAC2-SAC5, are crucial for vacuolar trafficking and for vacuolar morphology and function in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Fosfoproteínas Fosfatasas/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Cartilla de ADN/genética , Evolución Molecular , Microscopía Electrónica de Transmisión , Fenotipo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoproteínas Fosfatasas/genética , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Vacuolas/metabolismo , Vacuolas/fisiología , Vacuolas/ultraestructura
9.
New Phytol ; 211(1): 65-74, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27240710

RESUMEN

Plant development mediated by the phytohormone auxin depends on tightly controlled cellular auxin levels at its target tissue that are largely established by intercellular and intracellular auxin transport mediated by PIN auxin transporters. Among the eight members of the Arabidopsis PIN family, PIN6 is the least characterized candidate. In this study we generated functional, fluorescent protein-tagged PIN6 proteins and performed comprehensive analysis of their subcellular localization and also performed a detailed functional characterization of PIN6 and its developmental roles. The localization study of PIN6 revealed a dual localization at the plasma membrane (PM) and endoplasmic reticulum (ER). Transport and metabolic profiling assays in cultured cells and Arabidopsis strongly suggest that PIN6 mediates both auxin transport across the PM and intracellular auxin homeostasis, including the regulation of free auxin and auxin conjugates levels. As evidenced by the loss- and gain-of-function analysis, the complex function of PIN6 in auxin transport and homeostasis is required for auxin distribution during lateral and adventitious root organogenesis and for progression of these developmental processes. These results illustrate a unique position of PIN6 within the family of PIN auxin transporters and further add complexity to the developmentally crucial process of auxin transport.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Evolución Molecular , Homeostasis , Proteínas de Transporte de Membrana/genética , Filogenia , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente
10.
Proc Natl Acad Sci U S A ; 110(19): 7946-51, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23613581

RESUMEN

Removal of cargos from the cell surface via endocytosis is an efficient mechanism to regulate activities of plasma membrane (PM)-resident proteins, such as receptors or transporters. Salicylic acid (SA) is an important plant hormone that is traditionally associated with pathogen defense. Here, we describe an unanticipated effect of SA on subcellular endocytic cycling of proteins. Both exogenous treatments and endogenously enhanced SA levels repressed endocytosis of different PM proteins. The SA effect on endocytosis did not involve transcription or known components of the SA signaling pathway for transcriptional regulation. SA likely targets an endocytic mechanism that involves the coat protein clathrin, because SA interfered with the clathrin incidence at the PM and clathrin-deficient mutants were less sensitive to the impact of SA on the auxin distribution and root bending during the gravitropic response. By contrast, SA did not affect the ligand-induced endocytosis of the flagellin sensing2 (FLS2) receptor during pathogen responses. Our data suggest that the established SA impact on transcription in plant immunity and the nontranscriptional effect of SA on clathrin-mediated endocytosis are independent mechanisms by which SA regulates distinct aspects of plant physiology.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Clatrina/metabolismo , Endocitosis/fisiología , Proteínas de Transporte de Membrana/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/citología , Membrana Celular/metabolismo , Gravitropismo , Proteínas Fluorescentes Verdes/metabolismo , Ácidos Indolacéticos/metabolismo , Microscopía Confocal/métodos , Inmunidad de la Planta , Raíces de Plantas/citología , Transporte de Proteínas , Transducción de Señal
11.
Plant Physiol Biochem ; 208: 108507, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38467083

RESUMEN

The excess of salts in soils causes stress in most plants, except for some halophytes that can tolerate higher levels of salinity. The excess of Na+ generates an ionic imbalance, reducing the K+ content and altering cellular metabolism, thus impacting in plant growth and development. Additionally, salinity in soil induces water stress due to osmotic effects and increments the production of reactive oxygen species (ROS) that affect the cellular structure, damaging membranes and proteins, and altering the electrochemical potential of H+, which directly affects nutrient absorption by membrane transporters. However, plants possess mechanisms to overcome the toxicity of the sodium ions, such as internalization into the vacuole or exclusion from the cell, synthesis of enzymes or protective compounds against ROS, and the synthesis of metabolites that help to regulate the osmotic potential of plants. Physiologic and molecular mechanisms of salinity tolerance in plants will be addressed in this review. Furthermore, a revision of strategies taken by researchers to confer salt stress tolerance on agriculturally important species are discussed. These strategies include conventional breeding and genetic engineering as transgenesis and genome editing by CRISPR/Cas9.


Asunto(s)
Fitomejoramiento , Salinidad , Especies Reactivas de Oxígeno , Plantas Tolerantes a la Sal/genética , Desarrollo de la Planta , Estrés Fisiológico
12.
Proc Natl Acad Sci U S A ; 105(11): 4489-94, 2008 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-18337510

RESUMEN

Many aspects of plant development, including patterning and tropisms, are largely dependent on the asymmetric distribution of the plant signaling molecule auxin. Auxin transport inhibitors (ATIs), which interfere with directional auxin transport, have been essential tools in formulating this concept. However, despite the use of ATIs in plant research for many decades, the mechanism of ATI action has remained largely elusive. Using real-time live-cell microscopy, we show here that prominent ATIs such as 2,3,5-triiodobenzoic acid (TIBA) and 2-(1-pyrenoyl) benzoic acid (PBA) inhibit vesicle trafficking in plant, yeast, and mammalian cells. Effects on micropinocytosis, rab5-labeled endosomal motility at the periphery of HeLa cells and on fibroblast mobility indicate that ATIs influence actin cytoskeleton. Visualization of actin cytoskeleton dynamics in plants, yeast, and mammalian cells show that ATIs stabilize actin. Conversely, stabilizing actin by chemical or genetic means interferes with endocytosis, vesicle motility, auxin transport, and plant development, including auxin transport-dependent processes. Our results show that a class of ATIs act as actin stabilizers and advocate that actin-dependent trafficking of auxin transport components participates in the mechanism of auxin transport. These studies also provide an example of how the common eukaryotic process of actin-based vesicle motility can fulfill a plant-specific physiological role.


Asunto(s)
Actinas/metabolismo , Citoesqueleto/metabolismo , Ácidos Indolacéticos/antagonistas & inhibidores , Ácidos Indolacéticos/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Transporte Biológico , Línea Celular , Endocitosis , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo
13.
Biol Res ; 43(1): 99-111, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21157637

RESUMEN

The basic body plan of a plant is established early in embryogenesis when cells differentiate, giving rise to the apical and basal regions of the embryo. Using chlorophyll fluorescence as a marker for chloroplasts, we have detected specific patterns of chloroplast-containing cells at specific stages of embryogenesis. Non-randomly distributed chloroplast-containing cells are seen as early as the globular stage of embryogenesis in Arabidopsis. In the heart stage of embryogenesis, chloroplast containing cells are detected in epidermal cells as well as a central region of the heart stage embryo, forming a triangular septum of chloroplast-containing cells that divides the embryo into three equal sectors. Torpedo stage embryos have chloroplast-containing epidermal cells and a central band of chloroplast-containing cells in the cortex layer, just below the shoot apical meristem. In the walking-stick stage of embryogenesis, chloroplasts are present in the epidermal, cortex and endodermal cells. The chloroplasts appear reduced or absent from the provascular and columella cells of walking-stick stage embryos. These results suggest that there is a tight regulation of plastid differentiation during embryogenesis that generates specific patterns of chloroplast-containing cells in specific cell layers at specific stages of embryogenesis.


Asunto(s)
Arabidopsis/embriología , Clorofila/metabolismo , Cloroplastos/ultraestructura , Arabidopsis/ultraestructura , Fluorescencia , Microscopía Confocal , Microscopía Electrónica de Transmisión
14.
Methods Mol Biol ; 1789: 143-154, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29916077

RESUMEN

Chemical compounds are useful to perturb biological functions in the same way as classical genetic approaches take advantage of mutations at the DNA level to perturb gene function. The use of bioactive chemicals currently called chemical genetic is especially valuable for cell biology. Chemical genetic approaches allow perturbations of cellular processes post-germination in a given time window controlling the severity of the effect by modifying or modulating the dose and/or the period of the treatment. Additionally, compounds can be applied directly to different mutants and translational fluorescent reporters/marker lines, expanding the repertoire of experimental setups addressing cell biology research. In this chapter, we describe standard protocols to visualize vacuole morphology and trafficking to the vacuole and the use of bioactive compounds as a proxy to study these biological processes.


Asunto(s)
Arabidopsis/ultraestructura , Microscopía Confocal/métodos , Vacuolas/ultraestructura , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/metabolismo , Técnicas de Cultivo de Célula/métodos , Endocitosis/efectos de los fármacos , Indicadores y Reactivos , Microscopía Fluorescente/métodos , Transporte de Proteínas/efectos de los fármacos , Compuestos de Piridinio/análisis , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/análisis , Compuestos de Amonio Cuaternario/metabolismo , Esterilización/métodos , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo
15.
Methods Mol Biol ; 1761: 131-143, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29525954

RESUMEN

Immunolocalization is a valuable tool for cell biology research that allows to rapidly determine the localization and expression levels of endogenous proteins. In plants, whole-mount in situ immunolocalization remains a challenging method, especially in tissues protected by waxy layers and complex cell wall carbohydrates. Here, we present a robust method for whole-mount in situ immunolocalization in primary root meristems and lateral root primordia in Arabidopsis thaliana. For good epitope preservation, fixation is done in an alkaline paraformaldehyde/glutaraldehyde mixture. This fixative is suitable for detecting a wide range of proteins, including integral transmembrane proteins and proteins peripherally attached to the plasma membrane. From initiation until emergence from the primary root, lateral root primordia are surrounded by several layers of differentiated tissues with a complex cell wall composition that interferes with the efficient penetration of all buffers. Therefore, immunolocalization in early lateral root primordia requires a modified method, including a strong solvent treatment for removal of hydrophobic barriers and a specific cocktail of cell wall-degrading enzymes. The presented method allows for easy, reliable, and high-quality in situ detection of the subcellular localization of endogenous proteins in primary and lateral root meristems without the need of time-consuming crosses or making translational fusions to fluorescent proteins.


Asunto(s)
Arabidopsis/metabolismo , Inmunohistoquímica , Hibridación in Situ , Meristema/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/citología , Meristema/citología , Microscopía , Raíces de Plantas/citología
16.
Annu Rev Plant Biol ; 68: 197-224, 2017 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-28226233

RESUMEN

The plant endomembrane system is an extensively connected functional unit for exchanging material between compartments. Secretory and endocytic pathways allow dynamic trafficking of proteins, lipids, and other molecules, regulating a myriad of biological processes. Chemical genetics-the use of compounds to perturb biological processes in a fast, tunable, and transient manner-provides elegant tools for investigating this system. Here, we review how chemical genetics has helped to elucidate different aspects of membrane trafficking. We discuss different strategies for uncovering the modes of action of such compounds and their use in unraveling membrane trafficking regulators. We also discuss how the bioactive chemicals that are currently used as probes to interrogate endomembrane trafficking were discovered and analyze the results regarding membrane trafficking and pathway crosstalk. The integration of different expertises and the rational implementation of chemical genetic strategies will improve the identification of molecular mechanisms that drive intracellular trafficking and our understanding of how trafficking interfaces with plant physiology and development.


Asunto(s)
Membrana Celular/metabolismo , Plantas/metabolismo , Transporte Biológico , Endocitosis/fisiología , Modelos Biológicos , Plantas/ultraestructura , Transporte de Proteínas/genética , Relación Estructura-Actividad
17.
Plant Sci ; 250: 10-19, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27457979

RESUMEN

The pollen grains arise after meiosis of pollen mother cells within the anthers. A series of complex structural changes follows, generating mature pollen grains capable of performing the double fertilization of the female megasporophyte. Several signaling molecules, including hormones and lipids, have been involved in the regulation and appropriate control of pollen development. Phosphatidylinositol 4-phophate 5-kinases (PIP5K), which catalyze the biosynthesis of the phosphoinositide PtdIns(4,5)P2, are important for tip polar growth of root hairs and pollen tubes, embryo development, vegetative plant growth, and responses to the environment. Here, we report a role of PIP5Ks during microgametogenesis. PIP5K1 and PIP5K2 are expressed during early stages of pollen development and their transcriptional activity respond to auxin in pollen grains. Early male gametophytic lethality to certain grade was observed in both pip5k1(-/-) and pip5k2(-/-) single mutants. The number of pip5k mutant alleles is directly related to the frequency of aborted pollen grains suggesting the two genes are involved in the same function. Indeed PIP5K1 and PIP5K2 are functionally redundant since homozygous double mutants did not render viable pollen grains. The loss of function of PIP5K1 and PIP5K2results in defects in vacuole morphology in pollen at the later stages and epidermal root cells. Our results show that PIP5K1, PIP5K2 and phosphoinositide signaling are important cues for early developmental stages and vacuole formation during microgametogenesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Gametogénesis en la Planta , Regulación de la Expresión Génica de las Plantas , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Microscopía Electrónica de Transmisión , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Tubo Polínico/crecimiento & desarrollo , Vacuolas/ultraestructura
18.
Curr Biol ; 22(14): 1326-32, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22683261

RESUMEN

The dynamic spatial and temporal distribution of the crucial plant signaling molecule auxin is achieved by feedback coordination of auxin signaling and intercellular auxin transport pathways. Developmental roles of auxin have been attributed predominantly to its effect on transcription; however, an alternative pathway involving AUXIN BINDING PROTEIN1 (ABP1) has been proposed to regulate clathrin-mediated endocytosis in roots and Rho-like GTPase (ROP)-dependent pavement cell interdigitation in leaves. In this study, we show that ROP6 and its downstream effector RIC1 regulate clathrin association with the plasma membrane for clathrin-mediated endocytosis, as well as for its feedback regulation by auxin. Genetic analysis revealed that ROP6/RIC1 acts downstream of ABP1 to regulate endocytosis. This signaling circuit is also involved in the feedback regulation of PIN-FORMED 1 (PIN1) and PIN2 auxin transporters activity (via its constitutive endocytosis) and corresponding auxin transport-mediated processes, including root gravitropism and leave vascular tissue patterning. Our findings suggest that the signaling module auxin-ABP1-ROP6/RIC1-clathrin-PIN1/PIN2 is a shared component of the feedback regulation of auxin transport during both root and aerial development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Clatrina/metabolismo , Proteínas de Unión al GTP/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Arabidopsis/crecimiento & desarrollo , Brefeldino A/metabolismo , Membrana Celular/metabolismo , Endocitosis , Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transducción de Señal
19.
Dev Cell ; 22(3): 678-85, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22421050

RESUMEN

Growth and development are coordinated by an array of intercellular communications. Known plant signaling molecules include phytohormones and hormone peptides. Although both classes can be implicated in the same developmental processes, little is known about the interplay between phytohormone action and peptide signaling within the cellular microenvironment. We show that genes coding for small secretory peptides, designated GOLVEN (GLV), modulate the distribution of the phytohormone auxin. The deregulation of the GLV function impairs the formation of auxin gradients and alters the reorientation of shoots and roots after a gravity stimulus. Specifically, the GLV signal modulates the trafficking dynamics of the auxin efflux carrier PIN-FORMED2 involved in root tropic responses and meristem organization. Our work links the local action of secretory peptides with phytohormone transport.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Gravitropismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/genética , Proteínas Portadoras/genética , Microambiente Celular/fisiología , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Transducción de Señal/genética
20.
Nat Commun ; 3: 941, 2012 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-22760640

RESUMEN

Auxin is a key coordinative signal required for many aspects of plant development and its levels are controlled by auxin metabolism and intercellular auxin transport. Here we find that a member of PIN auxin transporter family, PIN8 is expressed in male gametophyte of Arabidopsis thaliana and has a crucial role in pollen development and functionality. Ectopic expression in sporophytic tissues establishes a role of PIN8 in regulating auxin homoeostasis and metabolism. PIN8 co-localizes with PIN5 to the endoplasmic reticulum (ER) where it acts as an auxin transporter. Genetic analyses reveal an antagonistic action of PIN5 and PIN8 in the regulation of intracellular auxin homoeostasis and gametophyte as well as sporophyte development. Our results reveal a role of the auxin transport in male gametophyte development in which the distinct actions of ER-localized PIN transporters regulate cellular auxin homoeostasis and maintain the auxin levels optimal for pollen development and pollen tube growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Ácidos Indolacéticos/metabolismo , Polen/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Polen/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA