Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612511

RESUMEN

Piscirickettsia salmonis is the pathogen that most affects the salmon industry in Chile. Large quantities of antibiotics have been used to control it. In search of alternatives, we have developed [Cu(NN1)2]ClO4 where NN1 = 6-((quinolin-2-ylmethylene)amino)-2H-chromen-2-one. The antibacterial capacity of [Cu(NN1)2]ClO4 was determined. Subsequently, the effect of the administration of [Cu(NN1)2]ClO4 on the growth of S. salar, modulation of the immune system and the intestinal microbiota was studied. Finally, the ability to protect against a challenge with P. salmonis was evaluated. The results obtained showed that the compound has an MIC between 15 and 33.9 µg/mL in four isolates. On the other hand, the compound did not affect the growth of the fish; however, an increase in the transcript levels of IFN-γ, IL-12, IL-1ß, CD4, lysozyme and perforin was observed in fish treated with 40 µg/g of fish. Furthermore, modulation of the intestinal microbiota was observed, increasing the genera of beneficial bacteria such as Lactobacillus and Bacillus as well as potential pathogens such as Vibrio and Piscirickettsia. Finally, the treatment increased survival in fish challenged with P. salmonis by more than 60%. These results demonstrate that the compound is capable of protecting fish against P. salmonis, probably by modulating the immune system and the composition of the intestinal microbiota.


Asunto(s)
Antiinfecciosos , Infecciones por Piscirickettsiaceae , Salmo salar , Animales , Cobre , Infecciones por Piscirickettsiaceae/tratamiento farmacológico , Infecciones por Piscirickettsiaceae/veterinaria , Antibacterianos/farmacología
2.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768285

RESUMEN

Intestinal dysbiosis is related to the physiopathology and clinical manifestation of rheumatoid arthritis (RA) and the response to pharmacologic treatment. The objectives of this study were (1) to analyze the effect of conventional synthetic disease modifying anti-rheumatic drugs (csDMARDs) on the abundance of gut microbiota's bacteria; (2) to evaluate the relationship between the differences in microbial abundance with the serum levels of intestinal fatty-acid binding protein 2 (IFABP2), cytokines, and the response phenotype to csDMARDs therapy in RA. A cross-sectional study was conducted on 23 women diagnosed with RA. The abundance of bacteria in gut microbiota was determined with qPCR. The ELISA technique determined serum levels of IFABP2, TNF-α, IL-10, and IL-17A. We found that the accumulated dose of methotrexate or prednisone is negatively associated with the abundance of Lactobacillus but positively associated with the abundance of Bacteroides fragilis. The Lactobacillus/Porphyromonas gingivalis ratio was associated with the Disease Activity Score-28 for RA with Erythrocyte Sedimentation Rate (DAS28-ESR) (r = 0.778, p = 0.030) and with the levels of IL-17A (r = 0.785, p = 0.027) in the group treated with csDMARD. Moreover, a relation between the serum levels of IFABP2 and TNF-α (r = 0.593, p = 0.035) was observed in the group treated with csDMARD. The serum levels of IFABP2 were higher in patients with secondary non-response to csDMARDs therapy. In conclusion, our results suggest that the ratios of gut microbiota's bacteria and intestinal permeability seems to establish the preamble for therapeutic secondary non-response in RA.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Microbioma Gastrointestinal , Lactobacillus , Femenino , Humanos , Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Estudios Transversales , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Interleucina-17 , Proyectos Piloto , Porphyromonas gingivalis , Factor de Necrosis Tumoral alfa/uso terapéutico , Intestinos/microbiología , Intestinos/fisiopatología , Permeabilidad de la Membrana Celular
3.
Fish Shellfish Immunol ; 98: 773-787, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31734286

RESUMEN

Interleukin (IL)-4 and IL-13 play a central role in T helper 2 immune response in mammals. The cell signalling is mediated by the type I heterodimeric receptor containing the IL-4Rα and γC chains, and the type II receptors formed by IL-4Rα and IL-13Rα1. In salmonid species, three paralogues of the IL-4 and IL-13 cytokines have been reported, il-4/13a, il-4/13b1 and il-4/13b2. In regard to receptors, two paralogues of each IL-4/13 receptor chains have been identified in rainbow trout while five genes named γc1, il-4rα, il-13rα1a, il-13rα1b, and il-13rα2 have identified in Atlantic salmon. Since Atlantic salmon is an important farmed fish species, the aim of this work was to get new insights into distribution, structure and expression regulation of the IL-4/13 receptors in salmon. By using qRT-PCR, it was shown that all γc1, il-4rα, il-13rα1a, il-13rα1b, and il-13rα2 receptor chains were expressed in lymphoid and non-lymphoid tissues of healthy salmon, nonetheless γC expression was higher in lymphoid than non-lymphoid tissues. The in silico structural analysis and homology modelling of the predicted receptor proteins showed that domains and most motifs present in the superior vertebrate chains are conserved in salmon suggesting a conserved role for these receptor chains. Only IL-13Rα1B is a receptor chain with a unique structure that seem not to be present in higher vertebrates but in fish species. In order to determine the regulatory role of IL-4/13 on the expression of receptor chains, Atlantic salmon il-4/13A gene was synthetized and cloned in pET15b. The recombinant IL-4/13A was produced in E. coli and the activity of the purified cytokine was confirmed in vitro. The regulatory role of IL-4/13A on the expression of their potential receptors was tested in salmon receiving the recombinant cytokine and effects were compared with those of the control group. The results showed that IL-4/13A induced the expression of its own gene and GATA-3, in the head kidney of fish but not in the spleen, while IL-10 increased in both lymphoid organs indicating a regulatory role of this cytokine on the induction of Th2 responses in salmon. IFN-γ and MHC class II were also later induced in head kidney. In regard to the expression of the receptor chains, IL-4/13A upregulated the expression of γC, IL-13Rα1A and IL-13Rα2A in the spleen but not in the head kidney of salmon, indicating a role on the modulation of cell signalling for the Th2 response. Furthermore, Piscirickettsia salmonis infection of Atlantic salmon occurred with an increase of γC and IL-13Rα1A suggesting a potential role of the IL-4/13 system in bacterial immunity or pathogenesis. This study contributes to a better understanding of the IL-4/13A system in salmon, which as a key axis for Th2 response may be involved not only in pathogen elimination but also in adaptive immune repair that seems critical tolerance to infectious diseases.


Asunto(s)
Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Receptores Tipo II de Interleucina-4/genética , Receptores Tipo II de Interleucina-4/inmunología , Salmo salar/genética , Salmo salar/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Familia de Multigenes , Filogenia , Receptores Tipo II de Interleucina-4/química , Alineación de Secuencia/veterinaria
4.
Molecules ; 25(14)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668579

RESUMEN

A new copper (I) complex, [Cu(NN1)2](ClO4), was synthesized, where NN1 was a imine ligand 6-((quinolin-2-ylmethylene)amino)-2H-chromen-2-one obtained by a derivatization of natural compound coumarin. The structural characterization in solution was done by NMR techniques, UV-Vis and cyclic voltammetry. The potential antibacterial effect of [Cu(NN1)2](ClO4), was assessed for F. psychrophilum isolated 10094. F. psychrophilum is a Gram-negative bacterium which causes diseases such as bacterial cold-water disease and rainbow trout fry syndrome, causing large economic losses in the freshwater salmonid aquaculture industry. This complex show to have antibacterial activity against F. psychrophilum 10094 at non-cytotoxic concentration in cell line derived from trout (F. psychrophilum 10094 IC50 16.0 ± 0.9; RT-GUT IC50 53.0 ± 3.1 µg/mL).


Asunto(s)
Antibacterianos/farmacología , Cobre/farmacología , Cumarinas/farmacología , Enfermedades de los Peces/microbiología , Flavobacterium/efectos de los fármacos , Animales , Línea Celular , Oncorhynchus mykiss , Salmón
5.
BMC Genomics ; 19(1): 657, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30189833

RESUMEN

BACKGROUND: Small RNAs (sRNAs) are key regulators of gene expression in bacteria. In addition to modulating translation initiation, sRNAs can interact with mRNA coding regions to regulate mRNA stability and translation efficiency, enhancing or impeding progression of the ribosome along the mRNA. Since most amino acids are decoded by more than one codon (synonymous) we asked as to whether there is a codon bias in the interaction of sRNAs with coding regions of mRNAs. Therefore, we explored whether there are differences in codon usage or tRNA availability according to whether an mRNA is regulated by sRNAs or not. We also explored these parameters in the coding interaction regions in mRNAs. We focused our analysis on sRNAs that regulate multiple mRNAs. RESULTS: We found differences in codon adaptation index and tRNA adaptation index between sRNA-regulated and non-sRNA-regulated mRNAs. Interestingly, the sRNA-mRNA interacting regions tended to be enriched in unpreferred codons decoded by scarce tRNAs. We also found that sRNAs with multiple targets often contained modular segments capable of recognizing conserved motifs among these mRNAs. CONCLUSIONS: Our results show that sRNAs in E. coli tend to recognize mRNA coding regions in which the ribosome is predicted to advance at low speeds. Identified motifs in interacting regions are conserved among mRNAs that are recognized by the same sRNA.


Asunto(s)
Codón/genética , Escherichia coli/genética , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , ARN Mensajero/genética , Análisis de Secuencia de ARN
6.
RNA Biol ; 15(4-5): 492-499, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29168417

RESUMEN

Horizontal gene transfer is crucial for the adaptation of microorganisms to environmental cues. The acidophilic, bioleaching bacterium Acidithiobacillus ferrooxidans encodes an integrative-conjugative genetic element (ICEAfe1) inserted in the gene encoding a tRNAAla. This genetic element is actively excised from the chromosome upon induction of DNA damage. A similar genetic element (ICEAcaTY.2) is also found in an equivalent position in the genome of Acidithiobacillus caldus. The local genomic context of both mobile genetic elements is highly syntenous and the cognate integrases are well conserved. By means of site directed mutagenesis, target site deletions and in vivo integrations assays in the heterologous model Escherichia coli, we assessed the target sequence requirements for site-specific recombination to be catalyzed by these integrases. We determined that each enzyme recognizes a specific small DNA segment encoding the anticodon stem/loop of the tRNA as target site and that specific positions in these regions are well conserved in the target attB sites of orthologous integrases. Also, we demonstrate that the local genetic context of the target sequence is not relevant for the integration to take place. These findings shed new light on the mechanism of site-specific integration of integrative-conjugative elements in members of Acidithiobacillus genus.


Asunto(s)
Acidithiobacillus/genética , Elementos Transponibles de ADN , ADN Bacteriano/genética , Transferencia de Gen Horizontal , ARN de Transferencia de Alanina/genética , Acidithiobacillus/metabolismo , Anticodón/química , Anticodón/metabolismo , Sitios de Ligazón Microbiológica , Secuencia de Bases , Mapeo Cromosómico , Cromosomas Bacterianos/química , Cromosomas Bacterianos/metabolismo , Daño del ADN , ADN Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Integrasas/genética , Integrasas/metabolismo , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , ARN de Transferencia de Alanina/metabolismo , Recombinación Genética , Sintenía
7.
RNA Biol ; 15(4-5): 518-527, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28708455

RESUMEN

The genome of the acidophilic, bioleaching bacterium Acidithiobacillus ferrooxidans, strain ATCC 23270, contains 95 predicted tRNA genes. Thirty-six of these genes (all 20 species) are clustered within an actively excising integrative-conjugative element (ICEAfe1). We speculated that these tRNA genes might have a role in adapting the bacterial tRNA pool to the codon usage of ICEAfe1 genes. To answer this question, we performed theoretical calculations of the global tRNA adaptation index to the entire A. ferrooxidans genome with and without the ICEAfe1 encoded tRNA genes. Based on these calculations, we observed that tRNAs encoded in ICEAfe1 negatively contribute to adapt the tRNA pool to the codon use in A. ferrooxidans. Although some of the tRNAs encoded in ICEAfe1 are functional in aminoacylation or protein synthesis, we found that they are expressed at low levels. These findings, along with the identification of a tRNA-like RNA encoded in the same cluster, led us to speculate that tRNA genes encoded in the mobile genetic element ICEAfe1 might have acquired mutations that would result in either inactivation or the acquisition of new functions.


Asunto(s)
Acidithiobacillus/genética , Transferencia de Gen Horizontal , Genes Bacterianos , Genoma Bacteriano , Secuencias Repetitivas Esparcidas , ARN de Transferencia/genética , Acidithiobacillus/clasificación , Acidithiobacillus/metabolismo , Aminoacilación , Conjugación Genética , Mutación , Conformación de Ácido Nucleico , Filogenia , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo
8.
Proc Natl Acad Sci U S A ; 109(14): 5458-63, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22434909

RESUMEN

Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn(2+). Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.


Asunto(s)
Basidiomycota/genética , Genómica , Lignina/metabolismo , Basidiomycota/clasificación , Hidrólisis , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , Especificidad de la Especie
9.
Front Chem ; 12: 1338614, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807978

RESUMEN

[Cu(NN1)2]ClO4 is a copper (I) complex, where NN1 is an imine ligand 6-((quinolin-2-ylmethylene) amino)-2H-chromen-2-one obtained by derivatization of natural compound coumarin, developed for the treatment of infectious diseases that affect salmonids. In previous research, we showed that the Cu(I) coordination complex possesses antibacterial activity against Flavobacterium psychrophilum, providing protection against this pathogen in rainbow trout during challenge assays (with an RPS of 50%). In the present study, the effects of administering [Cu(NN1)2]ClO4 to Oncorhynchus mykiss over a 60-days period were evaluated with regard to systemic immune response and its potential to alter intestinal microbiota composition. In O. mykiss, an immunostimulatory effect was evident at days 30 and 45 after administration, resulting in an increment of transcript levels of IFN-γ, IL-12, TNF-α, lysozyme and perforin. To determine whether these immunomodulatory effects correlated with changes in the intestinal microbiota, we analyzed the metagenome diversity by V4 16S rRNA sequencing. In O. mykiss, both [Cu(NN1)2]ClO4 and commercial antibiotic florfenicol had comparable effects at the phylum level, resulting in a predominance of proteobacteria and firmicutes. Nonetheless, at the genus level, florfenicol and [Cu(NN1)2]ClO4 complex exhibited distinct effects on the intestinal microbiota of O. mykiss. In conclusion, our findings demonstrate that [Cu(NN1)2]ClO4 is capable of stimulating the immune system at a systemic level, while inducing alterations in the composition of the intestinal microbiota in O. mykiss.

10.
Microorganisms ; 12(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543677

RESUMEN

Aquaculture is a growing industry worldwide, but it faces challenges related to animal health. These challenges include infections by parasites, bacteria, and viral pathogens. These harmful pathogens have devastating effects on the industry, despite efforts to control them through vaccination and antimicrobial treatments. Unfortunately, these measures have proven insufficient to address the sanitary problems, resulting in greater environmental impact due to the excessive use of antimicrobials. In recent years, probiotics have emerged as a promising solution to enhance the performance of the immune system against parasitic, bacterial, and viral pathogens in various species, including mammals, birds, and fish. Some probiotics have been genetically engineered to express and deliver immunomodulatory molecules. These promote selective therapeutic effects and specific immunization against specific pathogens. This review aims to summarize recent research on the use of probiotics in fish aquaculture, with a particular emphasis on genetically modified probiotics. In particular, we focus on the advantages of using these microorganisms and highlight the main barriers hindering their widespread application in the aquaculture industry.

11.
Microorganisms ; 12(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38543581

RESUMEN

In this study, bacterial isolates C1-4-7, D2-4-6, and M1-4-11 from Antarctic soil were phenotypically and genotypically characterized, and their antibacterial spectrum and that of cell-free culture supernatant were investigated. Finally, the effect of temperature and culture medium on the production of antimicrobial compounds was investigated. The three bacteria were identified as different strains of the genus Pseudomonas. The three bacteria were multi-drug resistant to antibiotics. They exhibited different patterns of growth inhibition of pathogenic bacteria. M1-4-11 was remarkable for inhibiting the entire set of pathogenic bacteria tested. All three bacteria demonstrated optimal production of antimicrobial compounds at 15 °C and 18 °C. Among the culture media studied, Nutrient broth would be the most suitable to promote the production of antimicrobial compounds. The thermostability exhibited by the antimicrobial molecules secreted, their size of less than 10 kDa, and their protein nature would indicate that these molecules are bacteriocin-like compounds.

12.
Virol J ; 10: 223, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23829271

RESUMEN

BACKGROUND: The ISA virus (ISAV) is an Orthomyxovirus whose genome encodes for at least 10 proteins. Low protein identity and lack of genetic tools have hampered the study of the molecular mechanism behind its virulence. It has been shown that viral codon usage controls several processes such as translational efficiency, folding, tuning of protein expression, antigenicity and virulence. Despite this, the possible role that adaptation to host codon usage plays in virulence and viral evolution has not been studied in ISAV. METHODS: Intergenomic adaptation between viral and host genomes was calculated using the codon adaptation index score with EMBOSS software and the Kazusa database. Classification of host genes according to GeneOnthology was performed using Blast2go. A non parametric test was applied to determine the presence of significant correlations among CAI, mortality and time. RESULTS: Using the codon adaptation index (CAI) score, we found that the encoding genes for nucleoprotein, matrix protein M1 and antagonist of Interferon I signaling (NS1) are the ISAV genes that are more adapted to host codon usage, in agreement with their requirement for production of viral particles and inactivation of antiviral responses. Comparison to host genes showed that ISAV shares CAI values with less than 0.45% of Salmo salar genes. GeneOntology classification of host genes showed that ISAV genes share CAI values with genes from less than 3% of the host biological process, far from the 14% shown by Influenza A viruses and closer to the 5% shown by Influenza B and C. As well, we identified a positive correlation (p<0.05) between CAI values of a virus and the duration of the outbreak disease in given salmon farms, as well as a weak relationship between codon adaptation values of PB1 and the mortality rates of a set of ISA viruses. CONCLUSIONS: Our analysis shows that ISAV is the least adapted viral Salmo salar pathogen and Orthomyxovirus family member less adapted to host codon usage, avoiding the general behavior of host genes. This is probably due to its recent emergence among farmed Salmon populations.


Asunto(s)
Adaptación Biológica , Codón , Enfermedades de los Peces/virología , Isavirus/genética , Infecciones por Orthomyxoviridae/veterinaria , Salmo salar/genética , Animales , Biología Computacional , Brotes de Enfermedades , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/patología , Isavirus/aislamiento & purificación , Isavirus/patogenicidad , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Análisis de Supervivencia , Factores de Tiempo
13.
Virol J ; 10: 180, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23742749

RESUMEN

BACKGROUND: Segment 6 of the ISA virus codes for hemoagglutinin-esterase (HE). This segment is highly variable, with more than 26 variants identified. The major variation is observed in what is called the high polymorphism region (HPR). The role of the different HPR zones in the viral cycle or evolution remains unknown. However viruses that present the HPR0 are avirulent, while viruses with important deletions in this region have been responsible for outbreaks with high mortality rates. In this work, using bioinformatic tools, we examined the influence of different HPRs on the adaptation of HE genes to the host translational machinery and the relationship to observed virulence. METHODS: Translational efficiency of HE genes and their HPR were estimated analyzing codon-pair bias (CPB), adaptation to host codon use (codon adaptation index-CAI) and the adaptation to available tRNAs (tAI). These values were correlated with reported mortality for the respective ISA virus and the ΔG of RNA folding. tRNA abundance was inferred from tRNA gene numbers identified in the Salmo salar genome using tRNAScan-SE. Statistical correlation between data was performed using a non-parametric test. RESULTS: We found that HPR0 contains zones with codon pairs of low frequency and low availability of tRNA with respect to salmon codon-pair usage, suggesting that HPR modifies HE translational efficiency. Although calculating tAI was impossible because one third of tRNAs (~60.000) were tRNA-ala, translational efficiency measured by CPB shows that as HPR size increases, the CPB value of the HE gene decreases (P = 2x10⁻7, ρ = -0.675, n = 63) and that these values correlate positively with the mortality rates caused by the virus (ρ = 0.829, P = 2x10⁻7, n = 11). The mortality associated with different virus isolates or their corresponding HPR sizes were not related with the ΔG of HPR RNA folding, suggesting that the secondary structure of HPR RNA does not modify virulence. CONCLUSIONS: Our results suggest that HPR size affects the efficiency of gene translation, which modulates the virulence of the virus by a mechanism similar to that observed in production of live attenuated vaccines through deoptimization of codon-pair usage.


Asunto(s)
Codón , Enfermedades de los Peces/virología , Isavirus/patogenicidad , Mortalidad , Infecciones por Orthomyxoviridae/veterinaria , Proteínas Virales/metabolismo , Adaptación Biológica , Animales , Enfermedades de los Peces/mortalidad , Variación Genética , Isavirus/genética , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/virología , Salmo salar , Proteínas Virales/genética , Virulencia
14.
Virol J ; 10: 318, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24165156

RESUMEN

BACKGROUND: HIV in Chile has a notification rate of 0.01%. Coreceptor antagonists are a family of antiretroviral drugs that are used with the prior knowledge of patients HIV-1 tropism. Viral RNA-based tropism detection requires a plasma viral load ≥1000 copies/mL, while proviral DNA-based detection can be performed regardless of plasma viral load. This test is useful in patients with low or undetectable viral loads and would benefit with a proper therapy. The aim of this study was to determine the correlation between HIV RNA and proviral genotypic DNA tropism tests. FINDINGS: Forty three Chilean patients were examined using population-based V3 sequencing, and a geno2pheno false-positive rate (FPR) cutoff values of 5, 5.75, 10 and 20%. With cutoff 5.75% a concordance of 88.4% in tropism prediction was found after a simultaneous comparison between HIV tropism assessment by RNA and DNA. In total, five discrepancies (11.6%) were found, 3 patients were RNA-R5/DNA-X4 and two were RNA-X4/DNA-R5. Proviral DNA enabled the prediction of tropism in patients with a low or undetectable viral load. For cutoff 5 and 5.75% genotypic testing using proviral DNA showed a similar sensitivity for X4 as RNA. We found that the highest sensitivity for detecting the X4 strain occurred with proviral DNA and cutoff of 10 and 20%. Viral loads were higher among X4 strain carriers than among R5 strain carriers (p < 0.05). CONCLUSIONS: A high degree of concordance was found between tropism testing with RNA and testing with proviral DNA. Our results suggest that proviral DNA-based genotypic tropism testing is a useful option for patients with low or undetectable viral load who require a different therapy.


Asunto(s)
ADN Viral/genética , Técnicas de Genotipaje/métodos , Infecciones por VIH/virología , VIH-1/fisiología , ARN Viral/genética , Tropismo Viral , Virología/métodos , Adolescente , Adulto , Anciano , Chile , Femenino , Genotipo , VIH-1/genética , VIH-1/aislamiento & purificación , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
15.
Front Microbiol ; 14: 1072793, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007466

RESUMEN

The presence of mobile genetic elements in Salmonella isolated from a chicken farm constitutes a potential risk for the appearance of emerging bacteria present in the food industry. These elements contribute to increased pathogenicity and antimicrobial resistance through genes that are related to the formation of biofilms and resistance genes contained in plasmids, integrons, and transposons. One hundred and thirty-three Salmonella isolates from different stages of the production line, such as feed manufacturing, hatchery, broiler farm, poultry farm, and slaughterhouse, were identified, serotyped and sequenced. The most predominant serotype was Salmonella Infantis. Phylogenetic analyses demonstrated that the diversity and spread of strains in the pipeline are serotype-independent, and that isolates belonging to the same serotype are very closely related genetically. On the other hand, Salmonella Infantis isolates carried the pESI IncFIB plasmid harboring a wide variety of resistance genes, all linked to mobile genetic elements, and among carriers of these plasmids, the antibiograms showed differences in resistance profiles and this linked to a variety in plasmid structure, similarly observed in the diversity of Salmonella Heidelberg isolates carrying the IncI1-Iα plasmid. Mobile genetic elements encoding resistance and virulence genes also contributed to the differences in gene content. Antibiotic resistance genotypes were matched closely by the resistance phenotypes, with high frequency of tetracycline, aminoglycosides, and cephalosporins resistance. In conclusion, the contamination in the poultry industry is described throughout the entire production line, with mobile genetic elements leading to multi-drug resistant bacteria, thus promoting survival when challenged with various antimicrobial compounds.

16.
Comput Struct Biotechnol J ; 21: 2558-2578, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122632

RESUMEN

Butyrate is a microbiota-produced metabolite, sensed by host short-chain fatty acid receptors FFAR2 (Gpr43), FFAR3 (Gpr41), HCAR2 (Gpr109A), and Histone deacetylase (HDAC) that promotes microbiota-host crosstalk. Butyrate influences energy uptake, developmental and immune response in mammals. This microbial metabolite is produced by around 79 anaerobic genera present in the mammalian gut, yet little is known about the role of butyrate in the host-microbiota interaction in salmonid fish. To further our knowledge of this interaction, we analyzed the intestinal microbiota and genome of Atlantic salmon (Salmo salar), searching for butyrate-producing genera and host butyrate receptors. We identified Firmicutes, Proteobacteria, and Actinobacteria as the main butyrate-producing bacteria in the salmon gut microbiota. In the Atlantic salmon genome, we identified an expansion of genes orthologous to FFAR2 and HCAR2 receptors, and class I and IIa HDACs that are sensitive to butyrate. In addition, we determined the expression levels of orthologous of HCAR2 in the gut, spleen, and head-kidney, and FFAR2 in RTgutGC cells. The effect of butyrate on the Atlantic salmon immune response was evaluated by analyzing the pro and anti-inflammatory cytokines response in vitro in SHK-1 cells by RT-qPCR. Butyrate decreased the expression of the pro-inflammatory cytokine IL-1ß and increased anti-inflammatory IL-10 and TGF-ß cytokines. Butyrate also reduced the expression of interferon-alpha, Mx, and PKR, and decreased the viral load at a higher concentration (4 mM) in cells treated with this molecule before the infection with Infectious Pancreatic Necrosis Virus (IPNV) by mechanisms independent of FFAR2, FFAR3 and HCAR2 expression that probably inhibit HDAC. Moreover, butyrate modified phosphorylation of cytoplasmic proteins in RTgutGC cells. Our data allow us to infer that Atlantic salmon have the ability to sense butyrate produced by their gut microbiota via different specific targets, through which butyrate modulates the immune response of pro and anti-inflammatory cytokines and the antiviral response.

17.
J Virol ; 85(16): 8037-45, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21653663

RESUMEN

The infectious salmon anemia virus (ISAV), which belongs to the Orthomyxoviridae family, has been responsible for major losses in the salmon industry, with mortalities close to 100% in areas where Atlantic salmon (Salmo salar) is grown. This work studied the effect of ribavirin (1-ß-d-ribofuranosyl-1,2,3-triazole-3-carbaxaide), a broad-spectrum antiviral compound with proven ability to inhibit the replicative cycle of the DNA and RNA viruses. The results show that ribavirin was able to inhibit the infectivity of ISAV in in vitro assays. In these assays, a significant inhibition of the replicative viral cycle was observed with a 50% inhibitory concentration (IC50) of 0.02 µg/ml and an IC90 of 0.4 µg/ml of ribavirin. After ribavirin treatment, viral proteins were not detectable and a reduction of viral mRNA association with ribosomes was observed. Ribavirin does not affect the levels of EF1a, nor its association with polysomes, suggesting that the inhibition of RNA synthesis occurs specifically for the virus mRNAs and not for cellular mRNAs. Moreover, ribavirin caused a significant reduction in genomic and viral RNA messenger levels. The study of the inhibitory mechanism showed that it was not reversed by the addition of guanosine. Furthermore, in vivo assays showed a reduction in the mortality of Salmo salar by more than 90% in fish infected with ISAV and treated with ribavirin without adverse effects. In fact, these results show that ribavirin is an antiviral that could be used to prevent ISAV replication either in vitro or in vivo.


Asunto(s)
Antivirales/farmacología , Enfermedades de los Peces/tratamiento farmacológico , Isavirus/efectos de los fármacos , Infecciones por Orthomyxoviridae/veterinaria , Ribavirina/farmacología , Salmo salar/virología , Animales , Células Cultivadas , Enfermedades de los Peces/virología , Técnica del Anticuerpo Fluorescente , Guanosina/farmacología , Concentración 50 Inhibidora , Isavirus/fisiología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología , Reacción en Cadena de la Polimerasa , Polirribosomas/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/metabolismo , ARN Viral/biosíntesis , ARN Viral/metabolismo , Replicación Viral/efectos de los fármacos
18.
Foods ; 11(8)2022 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-35454751

RESUMEN

Foodborne diseases are extremely relevant and constitute an area of alert for public health authorities due to the high impact and number of people affected each year. The food industry has implemented microbiological control plans that ensure the quality and safety of its products; however, due to the high prevalence of foodborne diseases, the industry requires new microbiological control systems. One of the main causative agents of diseases transmitted by poultry meat is the bacterium Salmonella enterica. Disinfectants, antibiotics, and vaccines are used to control this pathogen. However, they have not been efficient in the total elimination of these bacteria, with numerous outbreaks caused by this bacterium observed today, in addition to the increase in antibiotic-resistant bacteria. The search for new technologies to reduce microbial contamination in the poultry industry continues to be a necessity and the use of lytic bacteriophages is one of the new solutions. In this study, 20 bacteriophages were isolated for Salmonella spp. obtained from natural environments and cocktails composed of five of them were designed, where three belonged to the Siphoviridae family and two to the Microviridae family. This cocktail was tested on chicken meat infected with Salmonella Typhimurium at 10 °C, where it was found that this cocktail was capable of decreasing 1.4 logarithmic units at 48 h compared to the control.

19.
Microorganisms ; 10(11)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36422366

RESUMEN

Previously, we reported an in vitro evaluation regarding antibacterial effects against F. psychrophilum by a new Cu (I) complex, [Cu(NN1)2](ClO4). This study presents the results of an in vivo evaluation of [Cu(NN1)2](ClO4) added as a dietary supplement against F. psychrophilum in rainbow trout. The results showed that the administration of [Cu(NN1)2](ClO4) at 29 and 58 µg/g of fish for 15 days does not affect the growth of rainbow trout. On the other hand, the amount of copper present in the liver, intestine, and muscle of rainbow trout was determined. The results showed that the amount of copper in the liver, when compared between treated fish and control fish, does not change. While, in the intestine, an increase in the fish fed at 58 µg/g of fish was observed. In muscle, a slight decrease at 29 µg/g was obtained. Additionally, copper concentrations in the pond water after 15 days of feeding with the [Cu(NN1)2](ClO4) complex showed the highest levels of copper. Finally, the effect of the administration of [Cu(NN1)2](ClO4) for 15 days at 58 µg/g of fish was evaluated against F. psychrophilum, where a 75% survival was obtained during 20 days of challenge.

20.
Microbiol Resour Announc ; 10(12)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33766903

RESUMEN

The volcanic soils of Chiloé Island, Chile, have physical and chemical characteristics that affect their productivity. We report here a 16S rRNA gene analysis that characterizes the predominant microbial communities in volcanic soils of Chiloé either in the presence or absence of fertilization. The major phyla identified were Proteobacteria, Acidobacteria, and Actinobacteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA