Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Dis ; 105(6): 1748-1757, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33206018

RESUMEN

Pseudomonas syringae pv. actinidiae is the etiological agent of kiwifruit canker disease, causing severe economic losses in kiwifruit production areas around the world. Rapid diagnosis, understanding of bacterial virulence, and rate of infection in kiwifruit cultivars are important in applying effective measures of disease control. P. syringae pv. actinidiae load in kiwifruit is currently determined by a labor-intense colony counting method with no high-throughput and specific quantification method being validated. In this work, we used three alternative P. syringae pv. actinidiae quantification methods in two infected kiwifruit cultivars: start of growth time, quantitative PCR (qPCR), and droplet digital PCR (ddPCR). Method performance in each case was compared with the colony counting method. Methods were validated using calibration curves obtained with serial dilutions of P. syringae pv. actinidiae biovar 3 (Psa3) inoculum and standard growth curves obtained from kiwifruit samples infected with Psa3 inoculum. All three alternative methods showed high correlation (r > 0.85) with the colony counting method. qPCR and ddPCR were very specific, sensitive (5 × 102 CFU/cm2), highly correlated to each other (r = 0.955), and flexible, allowing for sample storage. The inclusion of a kiwifruit biomass marker increased the methods' accuracy. The qPCR method was efficient and allowed for high-throughput processing, and the ddPCR method showed highly accurate results but was more expensive and time consuming. While not ideal for high-throughput processing, ddPCR was useful in developing accurate standard curves for the qPCR method. The combination of the two methods is high-throughput, specific for Psa3 quantification, and useful for research studies (e.g., disease phenotyping and host-pathogen interactions).


Asunto(s)
Actinidia , Pseudomonas syringae , Frutas , Enfermedades de las Plantas , Pseudomonas syringae/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
2.
BMC Genomics ; 9: 351, 2008 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-18655731

RESUMEN

BACKGROUND: Kiwifruit (Actinidia spp.) are a relatively new, but economically important crop grown in many different parts of the world. Commercial success is driven by the development of new cultivars with novel consumer traits including flavor, appearance, healthful components and convenience. To increase our understanding of the genetic diversity and gene-based control of these key traits in Actinidia, we have produced a collection of 132,577 expressed sequence tags (ESTs). RESULTS: The ESTs were derived mainly from four Actinidia species (A. chinensis, A. deliciosa, A. arguta and A. eriantha) and fell into 41,858 non redundant clusters (18,070 tentative consensus sequences and 23,788 EST singletons). Analysis of flavor and fragrance-related gene families (acyltransferases and carboxylesterases) and pathways (terpenoid biosynthesis) is presented in comparison with a chemical analysis of the compounds present in Actinidia including esters, acids, alcohols and terpenes. ESTs are identified for most genes in color pathways controlling chlorophyll degradation and carotenoid biosynthesis. In the health area, data are presented on the ESTs involved in ascorbic acid and quinic acid biosynthesis showing not only that genes for many of the steps in these pathways are represented in the database, but that genes encoding some critical steps are absent. In the convenience area, genes related to different stages of fruit softening are identified. CONCLUSION: This large EST resource will allow researchers to undertake the tremendous challenge of understanding the molecular basis of genetic diversity in the Actinidia genus as well as provide an EST resource for comparative fruit genomics. The various bioinformatics analyses we have undertaken demonstrates the extent of coverage of ESTs for genes encoding different biochemical pathways in Actinidia.


Asunto(s)
Actinidia/genética , Actinidia/fisiología , Bases de Datos Genéticas , Etiquetas de Secuencia Expresada , Frutas/crecimiento & desarrollo , Pigmentación/genética , Gusto , Actinidia/crecimiento & desarrollo , Actinidia/metabolismo , Adulto , Alérgenos/genética , Ácido Ascórbico/genética , Ácido Ascórbico/metabolismo , Niño , Codón , Secuencia de Consenso , Ésteres/metabolismo , Frutas/genética , Frutas/metabolismo , Genes de Plantas/genética , Marcadores Genéticos , Humanos , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Pigmentos Biológicos/biosíntesis , Pigmentos Biológicos/genética , Polimorfismo de Nucleótido Simple , Ácido Quínico/metabolismo , Análisis de Secuencia , Terpenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA