Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Lipid Res ; 65(7): 100572, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823780

RESUMEN

Contrast-enhanced computed tomography offers a nondestructive approach to studying adipose tissue in 3D. Several contrast-enhancing staining agents (CESAs) have been explored, whereof osmium tetroxide (OsO4) is the most popular nowadays. However, due to the toxicity and volatility of the conventional OsO4, alternative CESAs with similar staining properties were desired. Hf-WD 1:2 POM and Hexabrix have proven effective for structural analysis of adipocytes using contrast-enhanced computed tomography but fail to provide chemical information. This study introduces isotonic Lugol's iodine (IL) as an alternative CESA for adipose tissue analysis, comparing its staining potential with Hf-WD 1:2 POM and Hexabrix in murine caudal vertebrae and bovine muscle tissue strips. Single and sequential staining protocols were compared to assess the maximization of information extraction from each sample. The study investigated interactions, distribution, and reactivity of iodine species towards biomolecules using simplified model systems and assesses the potential of the CESA to provide chemical information. (Bio)chemical analyses on whole tissues revealed that differences in adipocyte gray values post-IL staining were associated with chemical distinctions between bovine muscle tissue and murine caudal vertebrae. More specific, a difference in the degree of unsaturation of fatty acids was identified as a likely contributor, though not the sole determinant of gray value differences. This research sheds light on the potential of IL as a CESA, offering both structural and chemical insights into adipose tissue composition.


Asunto(s)
Tejido Adiposo , Medios de Contraste , Tomografía Computarizada por Rayos X , Animales , Ratones , Medios de Contraste/química , Tejido Adiposo/diagnóstico por imagen , Tejido Adiposo/metabolismo , Bovinos , Tomografía Computarizada por Rayos X/métodos , Coloración y Etiquetado/métodos , Adipocitos/citología , Adipocitos/metabolismo , Ratones Endogámicos C57BL
2.
Stem Cells ; 40(2): 149-164, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35257177

RESUMEN

The mechanisms of obesity and type 2 diabetes (T2D)-associated impaired fracture healing are poorly studied. In a murine model of T2D reflecting both hyperinsulinemia induced by high-fat diet and insulinopenia induced by treatment with streptozotocin, we examined bone healing in a tibia cortical bone defect. A delayed bone healing was observed during hyperinsulinemia as newly formed bone was reduced by -28.4 ± 7.7% and was associated with accumulation of marrow adipocytes at the defect site +124.06 ± 38.71%, and increased density of SCA1+ (+74.99 ± 29.19%) but not Runx2+ osteoprogenitor cells. We also observed increased in reactive oxygen species production (+101.82 ± 33.05%), senescence gene signature (≈106.66 ± 34.03%), and LAMIN B1- senescent cell density (+225.18 ± 43.15%), suggesting accelerated senescence phenotype. During insulinopenia, a more pronounced delayed bone healing was observed with decreased newly formed bone to -34.9 ± 6.2% which was inversely correlated with glucose levels (R2 = 0.48, P < .004) and callus adipose tissue area (R2 = .3711, P < .01). Finally, to investigate the relevance to human physiology, we observed that sera from obese and T2D subjects had disease state-specific inhibitory effects on osteoblast-related gene signatures in human bone marrow stromal cells which resulted in inhibition of osteoblast and enhanced adipocyte differentiation. Our data demonstrate that T2D exerts negative effects on bone healing through inhibition of osteoblast differentiation of skeletal stem cells and induction of accelerated bone senescence and that the hyperglycemia per se and not just insulin levels is detrimental for bone healing.


Asunto(s)
Diabetes Mellitus Tipo 2 , Fracturas Óseas , Hiperinsulinismo , Animales , Callo Óseo , Diabetes Mellitus Tipo 2/complicaciones , Curación de Fractura , Humanos , Ratones , Obesidad/complicaciones , Células Madre
3.
Curr Osteoporos Rep ; 21(1): 45-55, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36534306

RESUMEN

PURPOSE OF REVIEW: This review focuses on the recent findings regarding bone marrow adipose tissue (BMAT) concerning bone health. We summarize the variations in BMAT in relation to age, sex, and skeletal sites, and provide an update on noninvasive imaging techniques to quantify human BMAT. Next, we discuss the role of BMAT in patients with osteoporosis and interventions that affect BMAT. RECENT FINDINGS: There are wide individual variations with region-specific fluctuation and age- and gender-specific differences in BMAT content and composition. The Bone Marrow Adiposity Society (BMAS) recommendations aim to standardize imaging protocols to increase comparability across studies and sites. Water-fat imaging (WFI) seems an accurate and efficient alternative for spectroscopy (1H-MRS). Most studies indicate that greater BMAT is associated with lower bone mineral density (BMD) and a higher prevalence of vertebral fractures. The proton density fat fraction (PDFF) and changes in lipid composition have been associated with an increased risk of fractures independently of BMD. Therefore, PDFF and lipid composition could potentially be future imaging biomarkers for assessing fracture risk. Evidence of the inhibitory effect of osteoporosis treatments on BMAT is still limited to a few randomized controlled trials. Moreover, results from the FRAME biopsy sub-study highlight contradictory findings on the effect of the sclerostin antibody romosozumab on BMAT. Further understanding of the role(s) of BMAT will provide insight into the pathogenesis of osteoporosis and may lead to targeted preventive and therapeutic strategies.


Asunto(s)
Médula Ósea , Osteoporosis , Humanos , Médula Ósea/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tejido Adiposo/diagnóstico por imagen , Tejido Adiposo/patología , Osteoporosis/diagnóstico por imagen , Osteoporosis/patología , Densidad Ósea , Lípidos
4.
Gastroenterology ; 156(8): 2208-2216.e1, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30772343

RESUMEN

BACKGROUND & AIMS: Perianal fistulas are common in patients with Crohn's disease (CD). Injections of cultured autologous and allogeneic adipose tissue-derived stem cells have been shown to heal CD-associated fistulas. Unfortunately, this treatment is time consuming and expensive. We investigated the effects of injecting freshly collected autologous adipose tissue into perianal fistulas in patients with CD. METHODS: In a prospective interventional study, freshly collected autologous adipose tissues were injected into complex perianal fistulas of 21 patients with CD, from March 2015 through June 2018. The primary endpoint was complete fistula healing (no symptoms of discharge, no visible external fistula opening in the perineum, and no internal opening detected by rectal digital examination) 6 months after the last injection. We performed pelvic magnetic resonance imaging to confirm fistula resolution in patients with intersphincter and transsphincter fistulas who showed complete healing at clinical examination. Patients without complete fistula healing after 6 weeks and those with later relapse were offered additional injections. No control individuals were included. RESULTS: Six months after the last adipose tissue injection, 12 patients (57%) had complete fistula healing. Three patients (14%) had ceased fistula secretion, and 1 patient (5%) reported reduced secretion. Among 10 patients with trans-sphincter or inter-sphincter fistulas, magnetic resonance imaging showed complete fistula resolution in 9 patients and a markedly reduced gracile fistula in the remaining patient. Of the 12 patients with complete fistula healing, 9 (43%) required 1 injection, 2 (10%) required 2 injections, and 1 (5%) required 3 injections. The predominant adverse effect was postprocedure proctalgia lasting a few days. Two patients developed small abscesses, 1 had urinary retention, and 1 had minor bleeding during liposuction. CONCLUSION: In a study of 21 patients with CD and perianal fistulas, we found injection of recently collected autologous adipose tissue to be safe and to result in complete fistula healing in 57% of patients. ClinicalTrials.gov, Number: NCT03803917.


Asunto(s)
Tejido Adiposo/trasplante , Anticuerpos Monoclonales Humanizados/administración & dosificación , Enfermedad de Crohn/complicaciones , Trasplante de Células Madre Mesenquimatosas/métodos , Fístula Rectal/terapia , Adulto , Autoinjertos , Estudios de Cohortes , Enfermedad de Crohn/diagnóstico por imagen , Femenino , Estudios de Seguimiento , Humanos , Inyecciones Intralesiones , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Posicionamiento del Paciente , Proctoscopía/métodos , Estudios Prospectivos , Fístula Rectal/diagnóstico por imagen , Fístula Rectal/etiología , Medición de Riesgo , Recolección de Tejidos y Órganos , Resultado del Tratamiento , Cicatrización de Heridas/fisiología
5.
Curr Osteoporos Rep ; 17(6): 446-454, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31749085

RESUMEN

PURPOSE OF REVIEW: The goal of this review is to discuss the role of insulin signaling in bone marrow adipocyte formation, metabolic function, and its contribution to cellular senescence in relation to metabolic bone diseases. RECENT FINDINGS: Insulin signaling is an evolutionally conserved signaling pathway that plays a critical role in the regulation of metabolism and longevity. Bone is an insulin-responsive organ that plays a role in whole body energy metabolism. Metabolic disturbances associated with obesity and type 2 diabetes increase a risk of fragility fractures along with increased bone marrow adiposity. In obesity, there is impaired insulin signaling in peripheral tissues leading to insulin resistance. However, insulin signaling is maintained in bone marrow microenvironment leading to hypermetabolic state of bone marrow stromal (skeletal) stem cells associated with accelerated senescence and accumulation of bone marrow adipocytes in obesity. This review summarizes current findings on insulin signaling in bone marrow adipocytes and bone marrow stromal (skeletal) stem cells and its importance for bone and fat metabolism. Moreover, it points out to the existence of differences between bone marrow and peripheral fat metabolism which may be relevant for developing therapeutic strategies for treatment of metabolic bone diseases.


Asunto(s)
Adipocitos/metabolismo , Enfermedades Óseas Metabólicas/metabolismo , Células de la Médula Ósea/metabolismo , Huesos/metabolismo , Senescencia Celular , Insulina/metabolismo , Adipogénesis , Tejido Adiposo/metabolismo , Animales , Médula Ósea/metabolismo , Diferenciación Celular , Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Humanos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Obesidad/metabolismo , Hormona Paratiroidea/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor de Insulina/metabolismo
8.
FASEB J ; 29(7): 2959-69, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25805830

RESUMEN

Obesity promotes insulin resistance associated with liver inflammation, elevated glucose production, and type 2 diabetes. Although insulin resistance is attenuated in genetic mouse models that suppress systemic inflammation, it is not clear whether local resident macrophages in liver, denoted Kupffer cells (KCs), directly contribute to this syndrome. We addressed this question by selectively silencing the expression of the master regulator of inflammation, NF-κB, in KCs in obese mice. We used glucan-encapsulated small interfering RNA particles (GeRPs) that selectively silence gene expression in macrophages in vivo. Following intravenous injections, GeRPs containing siRNA against p65 of the NF-κB complex caused loss of NF-κB p65 expression in KCs without disrupting NF-κB in hepatocytes or macrophages in other tissues. Silencing of NF-κB expression in KCs in obese mice decreased cytokine secretion and improved insulin sensitivity and glucose tolerance without affecting hepatic lipid accumulation. Importantly, GeRPs had no detectable toxic effect. Thus, KCs are key contributors to hepatic insulin resistance in obesity and a potential therapeutic target for metabolic disease.


Asunto(s)
Resistencia a la Insulina/fisiología , Macrófagos del Hígado/metabolismo , Obesidad/metabolismo , Factor de Transcripción ReIA/antagonistas & inhibidores , Animales , Citocinas/metabolismo , Sistemas de Liberación de Medicamentos , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Silenciador del Gen , Prueba de Tolerancia a la Glucosa , Humanos , Técnicas In Vitro , Inyecciones Intravenosas , Macrófagos del Hígado/patología , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/genética , Obesidad/patología , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Factor de Transcripción ReIA/genética
9.
Mol Pharm ; 13(3): 964-978, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26815386

RESUMEN

Translation of siRNA technology into the clinic is limited by the need for improved delivery systems that target specific cell types. Macrophages are particularly attractive targets for RNAi therapy because they promote pathogenic inflammatory responses in a number of important human diseases. We previously demonstrated that a multicomponent formulation of ß-1,3-d-glucan-encapsulated siRNA particles (GeRPs) can specifically and potently silence genes in mouse macrophages. A major advance would be to simplify the GeRP system by reducing the number of delivery components, thus enabling more facile manufacturing and future commercialization. Here we report the synthesis and evaluation of a simplified glucan-based particle (GP) capable of delivering siRNA in vivo to selectively silence macrophage genes. Covalent attachment of small-molecule amines and short peptides containing weak bases to GPs facilitated electrostatic interaction of the particles with siRNA and aided in the endosomal release of siRNA by the proton-sponge effect. Modified GPs were nontoxic and were efficiently internalized by macrophages in vitro. When injected intraperitoneally (i.p.), several of the new peptide-modified GPs were found to efficiently deliver siRNA to peritoneal macrophages in lean, healthy mice. In an animal model of obesity-induced inflammation, i.p. administration of one of the peptide-modified GPs (GP-EP14) bound to siRNA selectively reduced the expression of target inflammatory cytokines in the visceral adipose tissue macrophages. Decreasing adipose tissue inflammation resulted in an improvement of glucose metabolism in these metabolically challenged animals. Thus, modified GPs represent a promising new simplified system for the efficient delivery of therapeutic siRNAs specifically to phagocytic cells in vivo for modulation of inflammation responses.


Asunto(s)
Aminas/química , Sistemas de Liberación de Medicamentos , Terapia Genética , Macrófagos Peritoneales/efectos de los fármacos , Osteopontina/antagonistas & inhibidores , Fragmentos de Péptidos/química , ARN Interferente Pequeño/administración & dosificación , beta-Glucanos/química , Animales , Células Cultivadas , Humanos , Inflamación/genética , Inflamación/terapia , Macrófagos Peritoneales/citología , Macrófagos Peritoneales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/terapia , Osteopontina/genética , Proteoglicanos , ARN Interferente Pequeño/genética
10.
Proc Natl Acad Sci U S A ; 110(20): 8278-83, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23630254

RESUMEN

Adipose tissue (AT) inflammation and infiltration by macrophages is associated with insulin resistance and type 2 diabetes in obese humans, offering a potential target for therapeutics. However, whether AT macrophages (ATMs) directly contribute to systemic glucose intolerance has not been determined. The reason is the lack of methods to ablate inflammatory genes expressed in macrophages specifically localized within AT depots, leaving macrophages in other tissues unaffected. Here we report that i.p. administration of siRNA encapsulated by glucan shells in obese mice selectively silences genes in epididymal ATMs, whereas macrophages within lung, spleen, kidney, heart, skeletal muscle, subcutaneous (SubQ) adipose, and liver are not targeted. Such administration of GeRPs to silence the inflammatory cytokines TNF-α or osteopontin in epididymal ATMs of obese mice caused significant improvement in glucose tolerance. These data are consistent with the hypothesis that cytokines produced by ATMs can exacerbate whole-body glucose intolerance.


Asunto(s)
Tejido Adiposo/citología , Silenciador del Gen , Intolerancia a la Glucosa/metabolismo , Macrófagos/metabolismo , Obesidad/fisiopatología , Animales , Citocinas/metabolismo , Epidídimo/citología , Epidídimo/metabolismo , Intolerancia a la Glucosa/genética , Inflamación , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Microscopía Fluorescente , Osteopontina/metabolismo , Fagocitosis , Interferencia de ARN , ARN Interferente Pequeño , Factor de Necrosis Tumoral alfa/metabolismo
11.
Am J Physiol Endocrinol Metab ; 307(4): E374-83, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24986598

RESUMEN

Proinflammatory pathways in adipose tissue macrophages (ATMs) can impair glucose tolerance in obesity, but ATMs may also be beneficial as repositories for excess lipid that adipocytes are unable to store. To test this hypothesis, we selectively targeted visceral ATMs in obese mice with siRNA against lipoprotein lipase (LPL), leaving macrophages within other organs unaffected. Selective silencing of ATM LPL decreased foam cell formation in visceral adipose tissue of obese mice, consistent with a reduced supply of fatty acids from VLDL hydrolysis. Unexpectedly, silencing LPL also decreased the expression of genes involved in fatty acid uptake (CD36) and esterification in ATMs. This deficit in fatty acid uptake capacity was associated with increased circulating serum free fatty acids. Importantly, ATM LPL silencing also caused a marked increase in circulating fatty acid-binding protein-4, an adipocyte-derived lipid chaperone previously reported to induce liver insulin resistance and glucose intolerance. Consistent with this concept, obese mice with LPL-depleted ATMs exhibited higher hepatic glucose production from pyruvate and glucose intolerance. Silencing CD36 in ATMs also promoted glucose intolerance. Taken together, the data indicate that LPL secreted by ATMs enhances their ability to sequester excess lipid in obese mice, promoting systemic glucose tolerance.


Asunto(s)
Tejido Adiposo/metabolismo , Glucemia/metabolismo , Metabolismo de los Lípidos , Macrófagos/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/patología , Animales , Células Cultivadas , Intolerancia a la Glucosa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Lipoproteína Lipasa/antagonistas & inhibidores , Lipoproteína Lipasa/genética , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Obesidad/patología , ARN Interferente Pequeño/farmacología
12.
Front Cell Dev Biol ; 12: 1432668, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188529

RESUMEN

Bone marrow stromal cells (BMSCs) play a significant role in bone metabolism as they can differentiate into osteoblasts, bone marrow adipocytes (BMAds), and chondrocytes. BMSCs chronically exposed to nutrient overload undergo adipogenic programming, resulting in bone marrow adipose tissue (BMAT) formation. BMAT is a fat depot transcriptionally, metabolically, and morphologically distinct from peripheral adipose depots. Reactive oxygen species (ROS) are elevated in obesity and serve as important signals directing BMSC fate. ROS produced by the NADPH oxidase (NOX) family of enzymes, such as NOX4, may be responsible for driving BMSC adipogenesis at the expense of osteogenic differentiation. The dual nature of ROS as both cellular signaling mediators and contributors to oxidative stress complicates their effects on bone metabolism. This review discusses the complex interplay between ROS and BMSC differentiation in the context of metabolic bone diseases.Special attention is paid to the role of NOX4-ROS in regulating cellular processes within the bone marrow microenvironment and potential target in metabolic bone diseases.

13.
Biol Open ; 13(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38288785

RESUMEN

Bone marrow adiposity (BMA) is a rapidly growing yet very young research field that is receiving worldwide attention based on its intimate relationship with skeletal and metabolic diseases, as well as hematology and cancer. Moreover, increasing numbers of young scientists and students are currently and actively working on BMA within their research projects. These developments led to the foundation of the International Bone Marrow Adiposity Society (BMAS), with the goal to promote BMA knowledge worldwide, and to train new generations of researchers interested in studying this field. Among the many initiatives supported by BMAS, there is the BMAS Summer School, inaugurated in 2021 and now at its second edition. The aim of the BMAS Summer School 2023 was to educate and train students by disseminating the latest advancement on BMA. Moreover, Summer School 2023 provided suggestions on how to write grants, deal with negative results in science, and start a laboratory, along with illustrations of alternative paths to academia. The event was animated by constructive and interactive discussions between early-career researchers and more senior scientists. In this report, we highlight key moments and lessons learned from the event.


Asunto(s)
Adiposidad , Médula Ósea , Humanos , Tejido Adiposo , Instituciones Académicas
14.
PLoS One ; 19(9): e0309726, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39264940

RESUMEN

Preptin, a 34-amino acid peptide derived from pro-IGF2, is believed to influence various physiological processes, including insulin secretion and the regulation of bone metabolism. Despite its recognized involvement, the precise physiological role of preptin remains enigmatic. To address this knowledge gap, we synthesized 16 analogs of preptin, spanning a spectrum from full-length forms to fragments, and conducted comprehensive comparative activity evaluations alongside native human, mouse and rat preptin. Our study aimed to elucidate the physiological role of preptin. Contrary to previous indications of broad biological activity, our thorough analyses across diverse cell types revealed no significant biological activity associated with preptin or its analogs. This suggests that the associations of preptin with various diseases or tissue-specific abundance fluctuations may be influenced by factors beyond preptin itself, such as higher levels of IGF2 or IGF2 proforms present in tissues. In conclusion, our findings challenge the conventional notion of preptin as an isolated biologically active molecule and underscore the complexity of its interactions within biological systems. Rather than acting independently, the observed effects of preptin may arise from experimental conditions, elevated preptin concentrations, or interactions with related molecules such as IGF2.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina , Factor II del Crecimiento Similar a la Insulina/metabolismo , Animales , Humanos , Ratones , Ratas , Precursores de Proteínas/metabolismo , Fragmentos de Péptidos/metabolismo , Insulina/metabolismo
15.
Nutrients ; 15(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37960254

RESUMEN

This review focuses on providing physicians with insights into the complex relationship between bone marrow adipose tissue (BMAT) and bone health, in the context of weight loss through caloric restriction or metabolic and bariatric surgery (MBS), in people living with obesity (PwO). We summarize the complex relationship between BMAT and bone health, provide an overview of noninvasive imaging techniques to quantify human BMAT, and discuss clinical studies measuring BMAT in PwO before and after weight loss. The relationship between BMAT and bone is subject to variations based on factors such as age, sex, menopausal status, skeletal sites, nutritional status, and metabolic conditions. The Bone Marrow Adiposity Society (BMAS) recommends standardizing imaging protocols to increase comparability across studies and sites, they have identified both water-fat imaging (WFI) and spectroscopy (1H-MRS) as accepted standards for in vivo quantification of BMAT. Clinical studies measuring BMAT in PwO are limited and have shown contradictory results. However, BMAT tends to be higher in patients with the highest visceral adiposity, and inverse associations between BMAT and bone mineral density (BMD) have been consistently found in PwO. Furthermore, BMAT levels tend to decrease after caloric restriction-induced weight loss. Although weight loss was associated with overall fat loss, a reduction in BMAT did not always follow the changes in fat volume in other tissues. The effects of MBS on BMAT are not consistent among the studies, which is at least partly related to the differences in the study population, skeletal site, and duration of the follow-up. Overall, gastric bypass appears to decrease BMAT, particularly in patients with diabetes and postmenopausal women, whereas sleeve gastrectomy appears to increase BMAT. More research is necessary to evaluate changes in BMAT and its connection to bone metabolism, either in PwO or in cases of weight loss through caloric restriction or MBS, to better understand the role of BMAT in this context and determine the local or systemic factors involved.


Asunto(s)
Tejido Adiposo , Médula Ósea , Humanos , Femenino , Médula Ósea/metabolismo , Densidad Ósea , Obesidad/metabolismo , Pérdida de Peso
16.
Front Cell Dev Biol ; 11: 1255823, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37791077

RESUMEN

Background: Bone marrow stromal cells (BMSCs) are the source of multipotent stem cells, which are important for regenerative medicine and diagnostic purposes. The isolation of human BMSCs from the bone marrow (BM) cavity using BM aspiration applies the method with collection into tubes containing anticoagulants. Interactions with anticoagulants may affect the characteristics and composition of isolated BMSCs in the culture. Thus, we investigated how anticoagulants in isolation procedures and cultivation affect BMSC molecular characteristics. Methods: BM donors (age: 48-85 years) were recruited from the hematology clinic. BM aspirates were obtained from the iliac crest and divided into tubes coated with ethylenediaminetetraacetic acid (EDTA) or heparin anticoagulants. Isolated BMSCs were analyzed by flow cytometry and RNA-seq analysis. Further cellular and molecular characterizations of BMSCs including CFU, proliferation and differentiation assays, cytometry, bioenergetic assays, metabolomics, immunostaining, and RT-qPCR were performed. Results: The paired samples of isolated BMSCs obtained from the same patient showed increased cellular yield in heparin vs. EDTA samples, accompanied by the increased number of CFU colonies. However, no significant changes in molecular characteristics were found between heparin- and EDTA-isolated BMSCs. On the other hand, RNA-seq analysis revealed an increased expression of genes involved in nucleotide metabolism and cellular metabolism in cultivated vs. non-cultivated BMSCs regardless of the anticoagulant, while genes involved in inflammation and chromatin remodeling were decreased in cultivated vs. non-cultivated BMSCs. Conclusion: The type of anticoagulant in BMSC isolation did not have a significant impact on molecular characteristics and cellular composition, while in vitro cultivation caused the major change in the transcriptomics of BMSCs, which is important for future protocols using BMSCs in regenerative medicine and clinics.

17.
Commun Biol ; 6(1): 863, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598269

RESUMEN

Insulin-like Growth Factor-2 (IGF2) is important for the regulation of human embryonic growth and development, and for adults' physiology. Incorrect processing of the IGF2 precursor, pro-IGF2(156), leads to the formation of two IGF2 proforms, big-IGF2(87) and big-IGF2(104). Unprocessed and mainly non-glycosylated IGF2 proforms are found at abnormally high levels in certain diseases, but their mode of action is still unclear. Here, we found that pro-IGF2(156) has the lowest ability to form its inactivating complexes with IGF-Binding Proteins and has higher proliferative properties in cells than IGF2 and other IGF prohormones. We also showed that big-IGF2(104) has a seven-fold higher binding affinity for the IGF2 receptor than IGF2, and that pro-IGF2(87) binds and activates specific receptors and stimulates cell growth similarly to the mature IGF2. The properties of these pro-IGF2 forms, especially of pro-IGF2(156) and big-IGF2(104), indicate them as hormones that may be associated with human diseases related to the accumulation of IGF-2 proforms in the circulation.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina , Péptidos y Proteínas de Señalización Intercelular , Adulto , Humanos , Proliferación Celular , Ciclo Celular , Mitógenos
18.
Nat Commun ; 14(1): 2016, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037828

RESUMEN

Upon transplantation, skeletal stem cells (also known as bone marrow stromal or mesenchymal stem cells) can regulate bone regeneration by producing secreted factors. Here, we identify KIAA1199 as a bone marrow stromal cell-secreted factor in vitro and in vivo. KIAA1199 plasma levels of patients positively correlate with osteoporotic fracture risk and expression levels of KIAA1199 in patient bone marrow stromal cells negatively correlates with their osteogenic differentiation potential. KIAA1199-deficient bone marrow stromal cells exhibit enhanced osteoblast differentiation in vitro and ectopic bone formation in vivo. Consistently, KIAA1199 knockout mice display increased bone mass and biomechanical strength, as well as an increased bone formation rate. They also exhibit accelerated healing of surgically generated bone defects and are protected from ovariectomy-induced bone loss. Mechanistically, KIAA1199 regulates osteogenesis by inhibiting the production of osteopontin by osteoblasts, via integrin-mediated AKT and ERK-MAPK intracellular signaling. Thus, KIAA1199 is a regulator of osteoblast differentiation and bone regeneration and could be targeted for the treatment or management of low bone mass conditions.


Asunto(s)
Hialuronoglucosaminidasa , Células Madre Mesenquimatosas , Osteoblastos , Osteogénesis , Animales , Femenino , Ratones , Regeneración Ósea/genética , Diferenciación Celular , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Osteogénesis/genética , Hialuronoglucosaminidasa/genética , Ratones Noqueados
19.
Commun Biol ; 6(1): 1043, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37833362

RESUMEN

Obesity adversely affects bone and fat metabolism in mice and humans. Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) have been shown to improve glucose metabolism and bone homeostasis in obesity. However, the impact of omega-3 PUFAs on bone marrow adipose tissue (BMAT) and bone marrow stromal cell (BMSC) metabolism has not been intensively studied yet. In the present study we demonstrated that omega-3 PUFA supplementation in high fat diet (HFD + F) improved bone parameters, mechanical properties along with decreased BMAT in obese mice when compared to the HFD group. Primary BMSCs isolated from HFD + F mice showed decreased adipocyte and higher osteoblast differentiation with lower senescent phenotype along with decreased osteoclast formation suggesting improved bone marrow microenvironment promoting bone formation in mice. Thus, our study highlights the beneficial effects of omega-3 PUFA-enriched diet on bone and cellular metabolism and its potential use in the treatment of metabolic bone diseases.


Asunto(s)
Médula Ósea , Ácidos Grasos Omega-3 , Humanos , Ratones , Animales , Médula Ósea/metabolismo , Adiposidad , Huesos/metabolismo , Obesidad/complicaciones , Obesidad/prevención & control , Obesidad/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/metabolismo , Modelos Animales de Enfermedad
20.
Front Endocrinol (Lausanne) ; 13: 981487, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187112

RESUMEN

Osteoporosis is defined as a systemic skeletal disease characterized by decreased bone mass and micro-architectural deterioration leading to increased fracture risk. Osteoporosis incidence increases with age in both post-menopausal women and aging men. Among other important contributing factors to bone fragility observed in osteoporosis, that also affect the elderly population, are metabolic disturbances observed in obesity and Type 2 Diabetes (T2D). These metabolic complications are associated with impaired bone homeostasis and a higher fracture risk. Expansion of the Bone Marrow Adipose Tissue (BMAT), at the expense of decreased bone formation, is thought to be one of the key pathogenic mechanisms underlying osteoporosis and bone fragility in obesity and T2D. Our review provides a summary of mechanisms behind increased Bone Marrow Adiposity (BMA) during aging and highlights the pre-clinical and clinical studies connecting obesity and T2D, to BMA and bone fragility in aging osteoporotic women and men.


Asunto(s)
Diabetes Mellitus Tipo 2 , Fracturas Óseas , Osteoporosis , Adiposidad , Anciano , Envejecimiento , Médula Ósea/patología , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Fracturas Óseas/metabolismo , Humanos , Masculino , Obesidad/metabolismo , Osteoporosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA