Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Genet ; 17(8): e1009757, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34449766

RESUMEN

To complete mitosis, the bridge that links the two daughter cells needs to be cleaved. This step is carried out by the endosomal sorting complex required for transport (ESCRT) machinery. AKTIP, a protein discovered to be associated with telomeres and the nuclear membrane in interphase cells, shares sequence similarities with the ESCRT I component TSG101. Here we present evidence that during mitosis AKTIP is part of the ESCRT machinery at the midbody. AKTIP interacts with the ESCRT I subunit VPS28 and forms a circular supra-structure at the midbody, in close proximity with TSG101 and VPS28 and adjacent to the members of the ESCRT III module CHMP2A, CHMP4B and IST1. Mechanistically, the recruitment of AKTIP is dependent on MKLP1 and independent of CEP55. AKTIP and TSG101 are needed together for the recruitment of the ESCRT III subunit CHMP4B and in parallel for the recruitment of IST1. Alone, the reduction of AKTIP impinges on IST1 and causes multinucleation. Our data altogether reveal that AKTIP is a component of the ESCRT I module and functions in the recruitment of ESCRT III components required for abscission.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Mitosis/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas Reguladoras de la Apoptosis/fisiología , Proteínas de Ciclo Celular/metabolismo , Citocinesis , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Células HeLa , Humanos , Transporte de Proteínas , Huso Acromático/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
J Lipid Res ; 54(6): 1630-1643, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23526831

RESUMEN

Lipocalin prostaglandin D synthase (L-PGDS) regulates synthesis of an important inflammatory and signaling mediator, prostaglandin D2 (PGD2). Here, we used structural, biophysical, and biochemical approaches to address the mechanistic aspects of substrate entry, catalysis, and product exit of this enzyme. Structure of human L-PGDS was solved in a complex with a substrate analog (SA) and in ligand-free form. Its catalytic Cys 65 thiol group was found in two different conformations, each making a distinct hydrogen bond network to neighboring residues. These help in elucidating the mechanism of the cysteine nucleophile activation. Electron density for ligand observed in the active site defined the substrate binding regions, but did not allow unambiguous fitting of the SA. To further understand ligand binding, we used NMR spectroscopy to map the binding sites and to show the dynamics of protein-substrate and protein-product interactions. A model for ligand binding at the catalytic site is proposed, showing a second binding site involved in ligand exit and entry. NMR chemical shift perturbations and NMR resonance line-width alterations (observed as changes of intensity in two-dimensional cross-peaks in [¹H,¹5N]-transfer relaxation optimization spectroscopy) for residues at the Ω loop (A-B loop), E-F loop, and G-H loop besides the catalytic sites indicate involvement of these residues in ligand entry/egress.


Asunto(s)
Oxidorreductasas Intramoleculares/química , Lipocalinas/química , Simulación de Dinámica Molecular , Catálisis , Dominio Catalítico , Humanos , Resonancia Magnética Nuclear Biomolecular/métodos , Unión Proteica , Estructura Secundaria de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
3.
Dev Cell ; 7(4): 559-69, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15469844

RESUMEN

ESCRT-I, -II, and -III protein complexes are sequentially recruited to endosomal membranes, where they orchestrate protein sorting and MVB biogenesis. In addition, they play a critical role in retrovirus budding. Structural understanding of ESCRT interaction networks is largely lacking. The 3.6 A structure of the yeast ESCRT-II core presented here reveals a trilobal complex containing two copies of Vps25, one copy of Vps22, and the C-terminal region of Vps36. Unexpectedly, the entire ESCRT-II core consists of eight repeats of a common building block, a "winged helix" domain. Two PPXY-motifs from Vps25 are involved in contacts with Vps22 and Vps36, and their mutation leads to ESCRT-II disruption. We show that purified ESCRT-II binds directly to the Vps20 component of ESCRT-III. Surprisingly, this binding does not require the protruding N-terminal coiled-coil of Vps22. Vps25 is the chief subunit responsible for Vps20 recruitment. This interaction dramatically increases binding of both components to lipid vesicles in vitro.


Asunto(s)
Cristalografía por Rayos X , Endosomas/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Portadoras/química , Complejos de Clasificación Endosomal Requeridos para el Transporte , Endosomas/metabolismo , Escherichia coli/genética , Liposomas/metabolismo , Proteínas de la Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica/genética , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido , Proteínas de Transporte Vesicular
4.
Biochem Soc Symp ; (74): 47-57, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17233579

RESUMEN

Three large protein complexes known as ESCRT I, ESCRT II and ESCRT III drive the progression of ubiquitinated membrane cargo from early endosomes to lysosomes. Several steps in this process critically depend on PtdIns3P, the product of the class III phosphoinositide 3-kinase. Our work has provided insights into the architecture, membrane recruitment and functional interactions of the ESCRT machinery. The fan-shaped ESCRT I core and the trilobal ESCRT II core are essential to forming stable, rigid scaffolds that support additional, flexibly-linked domains, which serve as gripping tools for recognizing elements of the MVB (multivesicular body) pathway: cargo protein, membranes and other MVB proteins. With these additional (non-core) domains, ESCRT I grasps monoubiquitinated membrane proteins and the Vps36 subunit of the downstream ESCRT II complex. The GLUE (GRAM-like, ubiquitin-binding on Eap45) domain extending beyond the core of the ESCRT II complex recognizes PtdIns3P-containing membranes, monoubiquitinated cargo and ESCRT I. The structure of this GLUE domain demonstrates that it has a split PH (pleckstrin homology) domain fold, with a non-typical phosphoinositide-binding pocket. Mutations in the lipid-binding pocket of the ESCRT II GLUE domain cause a strong defect in vacuolar protein sorting in yeast.


Asunto(s)
Endosomas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Humanos , Lisosomas/metabolismo , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Homología de Secuencia de Aminoácido
5.
Nat Cell Biol ; 12(8): 758-67, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20622870

RESUMEN

We describe a genome-wide gain-of-function screen for regulators of NF-kappaB, and identify Rap1 (Trf2IP), as an essential modulator of NF-kappaB-mediated pathways. NF-kappaB is induced by ectopic expression of Rap1, whereas its activity is inhibited by Rap1 depletion. In addition to localizing on telomeres, mammalian Rap1 forms a complex with IKKs (IkappaB kinases), and is crucial for the ability of IKKs to be recruited to, and phosphorylate, the p65 subunit of NF-kappaB to make it transcriptionally competent. Rap1-mutant mice display defective NF-kappaB activation and are resistant to endotoxic shock. Furthermore, levels of Rap1 are positively regulated by NF-kappaB, and human breast cancers with NF-kappaB hyperactivity show elevated levels of cytoplasmic Rap1. Similar to inhibiting NF-kappaB, knockdown of Rap1 sensitizes breast cancer cells to apoptosis. These results identify the first cytoplasmic role of Rap1 and provide a mechanism through which it regulates an important signalling cascade in mammals, independent of its ability to regulate telomere function.


Asunto(s)
Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Western Blotting , Línea Celular , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Cromatografía en Gel , Células HeLa , Humanos , Quinasa I-kappa B/genética , Inmunohistoquímica , Inmunoprecipitación , Estimación de Kaplan-Meier , Ratones , FN-kappa B/genética , Fosforilación/genética , Fosforilación/fisiología , Reacción en Cadena de la Polimerasa , Unión Proteica/genética , Unión Proteica/fisiología , ARN Interferente Pequeño , Complejo Shelterina , Proteínas de Unión a Telómeros/genética , Análisis de Matrices Tisulares
6.
Nat Cell Biol ; 11(5): 659-66, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19377466

RESUMEN

Post-translational modifications of NF-kappaB through phosphorylations enhance its transactivation potential. Much is known about the kinases that phosphorylate NF-kappaB, but little is known about the phosphatases that dephosphorylate it. By using a genome-scale siRNA screen, we identified the WIP1 phosphatase as a negative regulator of NF-kappaB signalling. WIP1-mediated regulation of NF-kappaB occurs in both a p38-dependent and independent manner. Overexpression of WIP1 resulted in decreased NF-kappaB activation in a dose-dependent manner, whereas WIP1 knockdown resulted in increased NF-kappaB function. We show that WIP1 is a direct phosphatase of Ser 536 of the p65 subunit of NF-kappaB. Phosphorylation of Ser 536 is known to be essential for the transactivation function of p65, as it is required for recruitment of the transcriptional co-activator p300. WIP1-mediated regulation of p65 regulated binding of NF-kappaB to p300 and hence chromatin remodelling. Consistent with our results, mice lacking WIP1 showed enhanced inflammation. These results provide the first genetic proof that a phosphatase directly regulates NF-kappaB signalling in vivo.


Asunto(s)
FN-kappa B/metabolismo , Fosfoproteínas Fosfatasas/fisiología , Transducción de Señal/fisiología , Estructuras Animales/efectos de los fármacos , Estructuras Animales/metabolismo , Animales , Línea Celular Tumoral , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Células HeLa , Humanos , Interleucina-1/farmacología , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos , Ratones Noqueados , Ratones Mutantes , Modelos Biológicos , Fosforilación/efectos de los fármacos , Proteína Fosfatasa 2C , ARN Interferente Pequeño/genética , Sepsis/metabolismo , Transducción de Señal/efectos de los fármacos , Bazo/citología , Bazo/efectos de los fármacos , Bazo/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/farmacología , Factores de Transcripción p300-CBP/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
EMBO J ; 26(2): 600-12, 2007 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-17215868

RESUMEN

ESCRT (endosomal sorting complex required for transport) complexes orchestrate efficient sorting of ubiquitinated transmembrane receptors to lysosomes via multivesicular bodies (MVBs). Yeast ESCRT-I and ESCRT-II interact directly in vitro; however, this association is not detected in yeast cytosol. To gain understanding of the molecular mechanisms of this link, we have characterised the ESCRT-I/-II supercomplex and determined the crystal structure of its interface. The link is formed by the vacuolar protein sorting (Vps)28 C-terminus (ESCRT-I) binding with nanomolar affinity to the Vps36-NZF-N zinc-finger domain (ESCRT-II). A hydrophobic patch on the Vps28-CT four-helix bundle contacts the hydrophobic knuckles of Vps36-NZF-N. Mutation of the ESCRT-I/-II link results in a cargo-sorting defect in yeast. Interestingly, the two Vps36 NZF domains, NZF-N and NZF-C, despite having the same core fold, use distinct surfaces to bind ESCRT-I or ubiquitinated cargo. We also show that a new component of ESCRT-I, Mvb12 (YGR206W), engages ESCRT-I directly with nanomolar affinity to form a 1:1:1:1 heterotetramer. Mvb12 does not affect the affinity of ESCRT-I for ESCRT-II in vitro. Our data suggest a complex regulatory mechanism for the ESCRT-I/-II link in yeast.


Asunto(s)
Complejos Multiproteicos/química , Proteínas de Transporte Vesicular/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Complejos de Clasificación Endosomal Requeridos para el Transporte , Endosomas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Unión Proteica , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Proteínas de Transporte Vesicular/metabolismo , Xenopus laevis , Levaduras
8.
Proc Natl Acad Sci U S A ; 104(43): 16940-5, 2007 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-17939994

RESUMEN

IkappaB kinase 2 (IKK2 or IKKbeta) is a component of the IKK complex that coordinates the cellular response to a diverse set of extracellular stimuli, including cytokines, microbial infection, and stress. In response to an external stimulus, the complex is activated, resulting in the phosphorylation and subsequent proteasome-mediated degradation of IkappaB proteins. This event triggers the nuclear import of the NF-kappaB transcription factor, which activates the transcription of genes that regulate a variety of fundamental biological processes, including immune response, cell survival, and development. Here, we define an essential role for IKK2 in normal mitotic progression and the maintenance of spindle bipolarity. Chemical and genetic perturbation of IKK2 promotes the formation of multipolar spindles and chromosome missegregation. Depletion of IKK2 results in the deregulation of Aurora A protein stability and coincident hyperactivation of a putative Aurora A substrate, the mitotic motor KIF11. These data support a function for IKK2 as an antagonist of Aurora A signaling during mitosis. Additionally, our results indicate a direct role for IKK2 in the maintenance of genome stability and underscore the potential for oncogenic consequences in targeting this kinase for therapeutic intervention.


Asunto(s)
Quinasa I-kappa B/metabolismo , Huso Acromático/enzimología , Aneuploidia , Animales , Aurora Quinasa A , Aurora Quinasas , Ciclo Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Células HeLa , Humanos , Quinasa I-kappa B/antagonistas & inhibidores , Quinasa I-kappa B/deficiencia , Ratones , Ratones Desnudos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Huso Acromático/efectos de los fármacos
9.
Cell ; 125(1): 99-111, 2006 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-16615893

RESUMEN

ESCRT complexes form the main machinery driving protein sorting from endosomes to lysosomes. Currently, the picture regarding assembly of ESCRTs on endosomes is incomplete. The structure of the conserved heterotrimeric ESCRT-I core presented here shows a fan-like arrangement of three helical hairpins, each corresponding to a different subunit. Vps23/Tsg101 is the central hairpin sandwiched between the other subunits, explaining the critical role of its "steadiness box" in the stability of ESCRT-I. We show that yeast ESCRT-I links directly to ESCRT-II, through a tight interaction of Vps28 (ESCRT-I) with the yeast-specific zinc-finger insertion within the GLUE domain of Vps36 (ESCRT-II). The crystal structure of the GLUE domain missing this insertion reveals it is a split PH domain, with a noncanonical lipid binding pocket that binds PtdIns3P. The simultaneous and reinforcing interactions of ESCRT-II GLUE domain with membranes, ESCRT-I, and ubiquitin are critical for ubiquitinated cargo progression from early to late endosomes.


Asunto(s)
Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/química , Cromatografía en Gel , Cristalografía por Rayos X , Complejos de Clasificación Endosomal Requeridos para el Transporte , Lípidos , Liposomas/metabolismo , Lisosomas/metabolismo , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química , Vesículas Transportadoras/metabolismo , Ubiquitina/metabolismo , Proteínas de Transporte Vesicular/genética
10.
J Biol Chem ; 279(27): 28689-96, 2004 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-15044434

RESUMEN

The endosomal sorting complex required for transport (ESCRT-I) is a 350-kDa complex of three proteins, Vps23, Vps28, and Vps37. The N-terminal ubiquitin-conjugating enzyme E2 variant (UEV) domain of Vps23 is required for sorting ubiquitinated proteins into the internal vesicles of multivesicular bodies. UEVs are homologous to E2 ubiquitin ligases but lack the conserved cysteine residue required for catalytic activity. The crystal structure of the yeast Vps23 UEV in a complex with ubiquitin (Ub) shows the detailed interactions made with the bound Ub. Compared with the solution structure of the Tsg101 UEV (the human homologue of Vps23) in the absence of Ub, two loops that are conserved among the ESCRT-I UEVs move toward each other to grip the Ub in a pincer-like grasp. The contacts with the UEV encompass two adjacent patches on the surface of the Ub, one containing several hydrophobic residues, including Ile-8(Ub), Ile-44(Ub), and Val-70(Ub), and the second containing a hydrophilic patch including residues Asn-60(Ub), Gln-62(Ub), Glu-64(Ub). The hydrophobic Ub patch interacting with the Vps23 UEV overlaps the surface of Ub interacting with the Vps27 ubiquitin-interacting motif, suggesting a sequential model for ubiquitinated cargo binding by these proteins. In contrast, the hydrophilic patch encompasses residues uniquely interacting with the ESCRT-I UEV. The structure provides a detailed framework for design of mutants that can specifically affect ESCRT-I-dependent sorting of ubiquitinated cargo without affecting Vps27-mediated delivery of cargo to endosomes.


Asunto(s)
Endosomas/metabolismo , Proteínas Fúngicas/química , Proteínas de Saccharomyces cerevisiae , Ubiquitina/química , Proteínas de Transporte Vesicular , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas Portadoras/metabolismo , Catálisis , Cristalografía por Rayos X , Cisteína/química , Complejos de Clasificación Endosomal Requeridos para el Transporte , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Ubiquitina/metabolismo , Ultracentrifugación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA