Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(7): e2218044120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36749724

RESUMEN

The massive release of captive-bred native species ("intentional release") is a pervasive method to enhance wild populations of commercial and recreational species. However, such external inputs may disrupt the sensitive species interactions that allow competing species to coexist, potentially compromising long-term community stability. Here, we use theory and long-term data of stream fish communities to show that intentional release destabilizes community dynamics with limited demographic benefit to the enhanced species. Our theory predicted that intentional release intensifies interspecific competition, facilitating the competitive exclusion of unenhanced species that otherwise stably coexist. In parallel, the excessive input of captive-bred individuals suppressed the natural recruitment of the enhanced species via intensified within-species competition. Consequently, the ecological community with the intentional release is predicted to show reduced community density with unstable temporal dynamics. Consistent with this prediction, stream fish communities showed greater temporal fluctuations and fewer taxonomic richness in rivers with the intensive release of hatchery salmon-a major fishery resource worldwide. Our findings alarm that the current overreliance on intentional release may accelerate global biodiversity loss with undesired consequences for the provisioning of ecosystem services.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Explotaciones Pesqueras , Salmón , Ríos
2.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34795054

RESUMEN

A prevailing paradigm suggests that species richness increases with area in a decelerating way. This ubiquitous power law scaling, the species-area relationship, has formed the foundation of many conservation strategies. In spatially complex ecosystems, however, the area may not be the sole dimension to scale biodiversity patterns because the scale-invariant complexity of fractal ecosystem structure may drive ecological dynamics in space. Here, we use theory and analysis of extensive fish community data from two distinct geographic regions to show that riverine biodiversity follows a robust scaling law along the two orthogonal dimensions of ecosystem size and complexity (i.e., the dual scaling law). In river networks, the recurrent merging of various tributaries forms fractal branching systems, where the prevalence of branching (ecosystem complexity) represents a macroscale control of the ecosystem's habitat heterogeneity. In the meantime, ecosystem size dictates metacommunity size and total habitat diversity, two factors regulating biodiversity in nature. Our theory predicted that, regardless of simulated species' traits, larger and more branched "complex" networks support greater species richness due to increased space and environmental heterogeneity. The relationships were linear on logarithmic axes, indicating power law scaling by ecosystem size and complexity. In support of this theoretical prediction, the power laws have consistently emerged in riverine fish communities across the study regions (Hokkaido Island in Japan and the midwestern United States) despite hosting different fauna with distinct evolutionary histories. The emergence of dual scaling law may be a pervasive property of branching networks with important implications for biodiversity conservation.


Asunto(s)
Biodiversidad , Ecosistema , Ríos , Animales , Peces/fisiología , Fractales , Mapeo Geográfico , Japón , Medio Oeste de Estados Unidos , Modelos Biológicos , Especificidad de la Especie
3.
Proc Natl Acad Sci U S A ; 115(26): E5963-E5969, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29895695

RESUMEN

Intraspecific population diversity (specifically, spatial asynchrony of population dynamics) is an essential component of metapopulation stability and persistence in nature. In 2D systems, theory predicts that metapopulation stability should increase with ecosystem size (or habitat network size): Larger ecosystems will harbor more diverse subpopulations with more stable aggregate dynamics. However, current theories developed in simplified landscapes may be inadequate to predict emergent properties of branching ecosystems, an overlooked but widespread habitat geometry. Here, we combine theory and analyses of a unique long-term dataset to show that a scale-invariant characteristic of fractal river networks, branching complexity (measured as branching probability), stabilizes watershed metapopulations. In riverine systems, each branch (i.e., tributary) exhibits distinctive ecological dynamics, and confluences serve as "merging" points of those branches. Hence, increased levels of branching complexity should confer a greater likelihood of integrating asynchronous dynamics over the landscape. We theoretically revealed that the stabilizing effect of branching complexity is a consequence of purely probabilistic processes in natural conditions, where within-branch synchrony exceeds among-branch synchrony. Contrary to current theories developed in 2D systems, metapopulation size (a variable closely related to ecosystem size) had vague effects on metapopulation stability. These theoretical predictions were supported by 18-y observations of fish populations across 31 watersheds: Our cross-watershed comparisons revealed consistent stabilizing effects of branching complexity on metapopulations of very different riverine fishes. A strong association between branching complexity and metapopulation stability is likely to be a pervasive feature of branching networks that strongly affects species persistence during rapid environmental changes.


Asunto(s)
Ecosistema , Peces/fisiología , Modelos Biológicos , Ríos , Animales
4.
Conserv Biol ; 32(6): 1403-1413, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29785835

RESUMEN

Large dams provide vital protection and services to humans. However, an increasing number of large dams worldwide are old and not operating properly. The removal of large dams has excellent potential to restore habitat connectivity and flow regimes; therefore, projecting the related ecological consequences is an emerging need for water resource and ecosystem management. However, no modeling methods are currently available for such projections at the basin scale. We devised a scheme that integrates changes in flow regimes and habitat network structure into a basin-scale impact assessment of removal of large dams and applied it to the Nagara-Ibi Basin, Japan. We used a graph-theoretical approach and a hydrological model, to quantify changes in habitat availability for 11 freshwater fishes at the basin scale under multiple removal scenarios. We compared these results with the change predicted using a conventional scheme that considered only changes to the habitat network due to dam removal. Our proposed scheme revealed that an increase in flow variability associated with dam removal projected both positive and negative effects on basin-scale habitat availability, depending on the focal species, endangered species had a negative response to dam removal. In contrast, the conventional approach projected only positive effects for all species. This difference in the outcomes indicates that large-dam removal can have negative and positive effects on watershed restoration due to changes in flow regimes. Our results also suggest the effect of removal of large dams may depend on the dams and their locations. Our study is the first step in projecting ecological trade-offs associated with the removal of large dams on riverscapes at the basin scale and provides a foundation for future process-based watershed restoration.


Asunto(s)
Ecosistema , Ríos , Animales , Conservación de los Recursos Naturales , Peces , Japón
5.
Proc Biol Sci ; 284(1866)2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29093220

RESUMEN

Host dispersal is now recognized as a key predictor of the landscape-level persistence and expansion of parasites. However, current theories treat post-infection dispersal propensities as a fixed trait, and the plastic nature of host's responses to parasite infection has long been underappreciated. Here, we present a mark-recapture experiment in a single host-parasite system (larval parasites of the freshwater mussel Margaritifera laevis and its salmonid fish host Oncorhynchus masou masou) and provide, to our knowledge, the first empirical evidence that parasite infection induces size-dependent host dispersal in the field. In response to parasite infection, large fish become more dispersive, whereas small fish tend to stay at the home patch. The observed plasticity in dispersal is interpretable from the viewpoint of host fitness: expected benefits (release from further infection) may exceed dispersal-associated costs for individuals with high dispersal ability (i.e. large fish) but are marginal for individuals with limited dispersal ability (i.e. small fish). Indeed, our growth analysis revealed that only small fish hosts incurred dispersal costs (reduced growth). Strikingly, our simulation study revealed that this plastic dispersal response of infected hosts substantially enhanced parasite persistence and occupancy in a spatially structured system. These results suggest that dispersal plasticity in host species is critical for understanding how parasites emerge, spatially spread, and persist in nature. Our findings provide a novel starting point for building a reliable, predictive model for parasite/disease management.


Asunto(s)
Bivalvos/fisiología , Tamaño Corporal , Enfermedades de los Peces/parasitología , Interacciones Huésped-Parásitos , Oncorhynchus/fisiología , Animales , Fenómenos de Retorno al Lugar Habitual
6.
Sci Total Environ ; 912: 168836, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38016568

RESUMEN

River ecosystems are heavily impacted by multiple stressors, where effects can cascade downstream of point sources. However, a spatial approach to assess the effects of multiple stressors is missing. We assessed the local and downstream effects on litter decomposition, and associated invertebrate communities of two stressors: flow reduction and artificial light at night (ALAN). We used an 18-flow-through mesocosm system consisting of two tributaries, where we applied the stressors, merging in a downstream section. We assessed the changes in decomposition rate and invertebrate community structure in leaf bags. We found no effect of ALAN or its interaction with flow reduction on the litter decomposition or the invertebrate community in the tributaries. Flow reduction alone led to a 14.8 % reduction in decomposition rate in the tributaries. We recorded no effect of flow reduction on the macroinvertebrates community composition in the litter bags. We also observed no effects of the spatial arrangement of the stressors on the litter decomposition and macroinvertebrate community structure downstream. Overall, our results suggest the impact of stressors on litter decomposition and macroinvertebrate communities remained local in our experiment. Our work thus calls for further studies to identify the mechanisms and the conditions under which spatial effects dominate over local processes.


Asunto(s)
Ecosistema , Contaminación Lumínica , Animales , Invertebrados , Ríos/química , Hojas de la Planta/química
7.
R Soc Open Sci ; 2(6): 150034, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26543582

RESUMEN

Current theories predict that Allee effects should be widespread in nature, but there is little consistency in empirical findings. We hypothesized that this gap can arise from ignoring spatial contexts (i.e. spatial scale and heterogeneity) that potentially mask an existing fitness-density relationship: a 'cryptic' Allee effect. To test this hypothesis, we analysed how spatial contexts interacted with conspecific density to influence the fertilization rate of the freshwater mussel Margaritifera laevis. This sessile organism has a simple fertilization process whereby females filter sperm from the water column; this system enabled us to readily assess the interaction between conspecific density and spatial heterogeneity (e.g. flow conditions) at multiple spatial levels. Our findings were twofold. First, positive density-dependence in fertilization was undetectable at a population scale (approx. less than 50.5 m(2)), probably reflecting the exponential decay of sperm density with distance from the sperm source. Second, the Allee effect was confirmed at a local level (0.25 m(2)), but only when certain flow conditions were met (slow current velocity and shallow water depth). These results suggest that spatial contexts can mask existing Allee effects.

8.
Ecol Evol ; 4(15): 3004-14, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25247058

RESUMEN

Unidirectional water flow results in the downstream-biased, asymmetric dispersal of many riverine organisms. However, little is known of how asymmetric dispersal influences riverine population structure and dynamics, limiting our ability to properly manage riverine organisms. A metapopulation of the freshwater pearl mussel Margaritifera laevis may be sensitive to river currents because mussels are repeatedly exposed to downstream drift during floods-a parasitic life stage is the only, limited period (∼40 days) during which larvae (glochidia) can move upstream with the aid of host fish. We hypothesized that water-mediated dispersal would overwhelm upstream dispersal via host fish, and therefore, that upstream subpopulations play a critical role as immigrant sources. To test this hypothesis, we examined the effects of both up- and downstream immigrant sources on the size of target subpopulations in the Shubuto River system, Hokkaido, Japan. We found that target subpopulation size was dependent on the upstream distribution range of reproductive subpopulations and the number of upstream tributaries, which are proxies for the number of potential immigrants moving downstream. In contrast, little influence was observed of downstream immigrant sources (proximity to downstream reproductive subpopulations). These results were consistent even after accounting for local environments and stream size. Our finding suggests that upstream subpopulations can be disproportionately important as immigrant sources when dispersal is strongly asymmetric.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA