Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(3): 689-708.e20, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33482083

RESUMEN

The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a GGGGCC repeat expansion in the C9orf72 gene. We developed a platform to interrogate the chromatin accessibility landscape and transcriptional program within neurons during degeneration. We provide evidence that neurons expressing the dipeptide repeat protein poly(proline-arginine), translated from the C9orf72 repeat expansion, activate a highly specific transcriptional program, exemplified by a single transcription factor, p53. Ablating p53 in mice completely rescued neurons from degeneration and markedly increased survival in a C9orf72 mouse model. p53 reduction also rescued axonal degeneration caused by poly(glycine-arginine), increased survival of C9orf72 ALS/FTD-patient-induced pluripotent stem cell (iPSC)-derived motor neurons, and mitigated neurodegeneration in a C9orf72 fly model. We show that p53 activates a downstream transcriptional program, including Puma, which drives neurodegeneration. These data demonstrate a neurodegenerative mechanism dynamically regulated through transcription-factor-binding events and provide a framework to apply chromatin accessibility and transcription program profiles to neurodegeneration.


Asunto(s)
Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN/genética , Degeneración Nerviosa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Axones/metabolismo , Proteína C9orf72/genética , Muerte Celular , Células Cultivadas , Corteza Cerebral/patología , Cromatina/metabolismo , Daño del ADN , Modelos Animales de Enfermedad , Drosophila , Ratones Endogámicos C57BL , Degeneración Nerviosa/patología , Estabilidad Proteica , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo
2.
Cell ; 180(4): 780-795.e25, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32059781

RESUMEN

The cerebral vasculature is a dense network of arteries, capillaries, and veins. Quantifying variations of the vascular organization across individuals, brain regions, or disease models is challenging. We used immunolabeling and tissue clearing to image the vascular network of adult mouse brains and developed a pipeline to segment terabyte-sized multichannel images from light sheet microscopy, enabling the construction, analysis, and visualization of vascular graphs composed of over 100 million vessel segments. We generated datasets from over 20 mouse brains, with labeled arteries, veins, and capillaries according to their anatomical regions. We characterized the organization of the vascular network across brain regions, highlighting local adaptations and functional correlates. We propose a classification of cortical regions based on the vascular topology. Finally, we analysed brain-wide rearrangements of the vasculature in animal models of congenital deafness and ischemic stroke, revealing that vascular plasticity and remodeling adopt diverging rules in different models.


Asunto(s)
Adaptación Fisiológica , Encéfalo/irrigación sanguínea , Capilares/anatomía & histología , Arterias Cerebrales/anatomía & histología , Venas Cerebrales/anatomía & histología , Remodelación Vascular , Animales , Capilares/patología , Arterias Cerebrales/patología , Venas Cerebrales/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Privación Sensorial , Estrés Psicológico/etiología , Estrés Psicológico/patología , Accidente Cerebrovascular/patología
3.
Cell ; 179(6): 1393-1408.e16, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31735496

RESUMEN

Behaviors are inextricably linked to internal state. We have identified a neural mechanism that links female sexual behavior with the estrus, the ovulatory phase of the estrous cycle. We find that progesterone-receptor (PR)-expressing neurons in the ventromedial hypothalamus (VMH) are active and required during this behavior. Activating these neurons, however, does not elicit sexual behavior in non-estrus females. We show that projections of PR+ VMH neurons to the anteroventral periventricular (AVPV) nucleus change across the 5-day mouse estrous cycle, with ∼3-fold more termini and functional connections during estrus. This cyclic increase in connectivity is found in adult females, but not males, and regulated by estrogen signaling in PR+ VMH neurons. We further show that these connections are essential for sexual behavior in receptive females. Thus, estrogen-regulated structural plasticity of behaviorally salient connections in the adult female brain links sexual behavior to the estrus phase of the estrous cycle.


Asunto(s)
Red Nerviosa/fisiología , Conducta Sexual Animal/fisiología , Animales , Estrógenos/metabolismo , Ciclo Estral/efectos de los fármacos , Femenino , Hormonas Esteroides Gonadales/farmacología , Hipotálamo Anterior/fisiología , Masculino , Ratones Endogámicos C57BL , Red Nerviosa/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ovario/metabolismo , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Receptores de Progesterona/metabolismo , Conducta Sexual Animal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
6.
Cell ; 175(7): 1811-1826.e21, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30503207

RESUMEN

Nervous system function depends on proper myelination for insulation and critical trophic support for axons. Myelination is tightly regulated spatially and temporally, but how it is controlled molecularly remains largely unknown. Here, we identified key molecular mechanisms governing the regional and temporal specificity of CNS myelination. We show that transcription factor EB (TFEB) is highly expressed by differentiating oligodendrocytes and that its loss causes precocious and ectopic myelination in many parts of the murine brain. TFEB functions cell-autonomously through PUMA induction and Bax-Bak activation to promote programmed cell death of a subset of premyelinating oligodendrocytes, allowing selective elimination of oligodendrocytes in normally unmyelinated brain regions. This pathway is conserved across diverse brain areas and is critical for myelination timing. Our findings define an oligodendrocyte-intrinsic mechanism underlying the spatiotemporal specificity of CNS myelination, shedding light on how myelinating glia sculpt the nervous system during development.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Encéfalo/metabolismo , Vaina de Mielina/metabolismo , Neuroglía/metabolismo , Oligodendroglía/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Encéfalo/citología , Femenino , Masculino , Ratones , Ratones Noqueados , Vaina de Mielina/genética , Neuroglía/citología , Oligodendroglía/citología , Proteínas Supresoras de Tumor/genética
7.
Cell ; 174(3): 590-606.e21, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29961574

RESUMEN

Cerebral cortex size differs dramatically between reptiles, birds, and mammals, owing to developmental differences in neuron production. In mammals, signaling pathways regulating neurogenesis have been identified, but genetic differences behind their evolution across amniotes remain unknown. We show that direct neurogenesis from radial glia cells, with limited neuron production, dominates the avian, reptilian, and mammalian paleocortex, whereas in the evolutionarily recent mammalian neocortex, most neurogenesis is indirect via basal progenitors. Gain- and loss-of-function experiments in mouse, chick, and snake embryos and in human cerebral organoids demonstrate that high Slit/Robo and low Dll1 signaling, via Jag1 and Jag2, are necessary and sufficient to drive direct neurogenesis. Attenuating Robo signaling and enhancing Dll1 in snakes and birds recapitulates the formation of basal progenitors and promotes indirect neurogenesis. Our study identifies modulation in activity levels of conserved signaling pathways as a primary mechanism driving the expansion and increased complexity of the mammalian neocortex during amniote evolution.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Animales , Proteínas de Unión al Calcio , Corteza Cerebral/metabolismo , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1 , Proteína Jagged-2 , Mamíferos/embriología , Ratones , Ratones Endogámicos C57BL , Neocórtex/fisiología , Células-Madre Neurales , Neurogénesis/fisiología , Neuroglía/fisiología , Neuronas , Factor de Transcripción PAX6/metabolismo , Proteínas Represoras , Transducción de Señal , Serpientes/embriología , Proteínas Roundabout
8.
Cell ; 170(3): 429-442.e11, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28753423

RESUMEN

Hunger, driven by negative energy balance, elicits the search for and consumption of food. While this response is in part mediated by neurons in the hypothalamus, the role of specific cell types in other brain regions is less well defined. Here, we show that neurons in the dorsal raphe nucleus, expressing vesicular transporters for GABA or glutamate (hereafter, DRNVgat and DRNVGLUT3 neurons), are reciprocally activated by changes in energy balance and that modulating their activity has opposite effects on feeding-DRNVgat neurons increase, whereas DRNVGLUT3 neurons suppress, food intake. Furthermore, modulation of these neurons in obese (ob/ob) mice suppresses food intake and body weight and normalizes locomotor activity. Finally, using molecular profiling, we identify druggable targets in these neurons and show that local infusion of agonists for specific receptors on these neurons has potent effects on feeding. These data establish the DRN as an important node controlling energy balance. PAPERCLIP.


Asunto(s)
Regulación del Apetito , Núcleo Dorsal del Rafe/metabolismo , Neuronas/metabolismo , Animales , Peso Corporal , Encéfalo/fisiología , Núcleo Dorsal del Rafe/citología , Electrofisiología , Ayuno , Hambre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Optogenética
9.
Cell ; 164(5): 1031-45, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26898330

RESUMEN

During development, sensory axons compete for limiting neurotrophic support, and local neurotrophin insufficiency triggers caspase-dependent axon degeneration. The signaling driving axon degeneration upon local deprivation is proposed to reside within axons. Our results instead support a model in which, despite the apoptotic machinery being present in axons, the cell body is an active participant in gating axonal caspase activation and axon degeneration. Loss of trophic support in axons initiates retrograde activation of a somatic pro-apoptotic pathway, which, in turn, is required for distal axon degeneration via an anterograde pro-degenerative factor. At a molecular level, the cell body is the convergence point of two signaling pathways whose integrated action drives upregulation of pro-apoptotic Puma, which, unexpectedly, is confined to the cell body. Puma then overcomes inhibition by pro-survival Bcl-xL and Bcl-w and initiates the anterograde pro-degenerative program, highlighting the role of the cell body as an arbiter of large-scale axon removal.


Asunto(s)
Axones/patología , Neuronas/patología , Transducción de Señal , Secuencia de Aminoácidos , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Axones/metabolismo , Ratones , Datos de Secuencia Molecular , Degeneración Nerviosa/patología , Neuronas/metabolismo , Proteínas/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Proteína bcl-X/metabolismo
10.
Cell ; 165(7): 1789-1802, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27238021

RESUMEN

Understanding how neural information is processed in physiological and pathological states would benefit from precise detection, localization, and quantification of the activity of all neurons across the entire brain, which has not, to date, been achieved in the mammalian brain. We introduce a pipeline for high-speed acquisition of brain activity at cellular resolution through profiling immediate early gene expression using immunostaining and light-sheet fluorescence imaging, followed by automated mapping and analysis of activity by an open-source software program we term ClearMap. We validate the pipeline first by analysis of brain regions activated in response to haloperidol. Next, we report new cortical regions downstream of whisker-evoked sensory processing during active exploration. Last, we combine activity mapping with axon tracing to uncover new brain regions differentially activated during parenting behavior. This pipeline is widely applicable to different experimental paradigms, including animal species for which transgenic activity reporters are not readily available.


Asunto(s)
Conducta Animal , Inmunohistoquímica , Neuroimagen/métodos , Animales , Antipsicóticos/administración & dosificación , Encéfalo/metabolismo , Conducta Exploratoria , Genes Inmediatos-Precoces , Haloperidol/administración & dosificación , Ratones , Ratones Endogámicos C57BL
11.
Cell ; 160(1-2): 161-76, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25594179

RESUMEN

Axonal death disrupts functional connectivity of neural circuits and is a critical feature of many neurodegenerative disorders. Pathological axon degeneration often occurs independently of known programmed death pathways, but the underlying molecular mechanisms remain largely unknown. Using traumatic injury as a model, we systematically investigate mitogen-activated protein kinase (MAPK) families and delineate a MAPK cascade that represents the early degenerative response to axonal injury. The adaptor protein Sarm1 is required for activation of this MAPK cascade, and this Sarm1-MAPK pathway disrupts axonal energy homeostasis, leading to ATP depletion before physical breakdown of damaged axons. The protective cytoNmnat1/Wld(s) protein inhibits activation of this MAPK cascade. Further, MKK4, a key component in the Sarm1-MAPK pathway, is antagonized by AKT signaling, which modulates the degenerative response by limiting activation of downstream JNK signaling. Our results reveal a regulatory mechanism that integrates distinct signals to instruct pathological axon degeneration.


Asunto(s)
Axones/patología , Sistema de Señalización de MAP Quinasas , Adenosina Trifosfato/metabolismo , Animales , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Muerte Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Ratones , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología
12.
Cell ; 159(4): 896-910, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25417164

RESUMEN

The visualization of molecularly labeled structures within large intact tissues in three dimensions is an area of intense focus. We describe a simple, rapid, and inexpensive method, iDISCO, that permits whole-mount immunolabeling with volume imaging of large cleared samples ranging from perinatal mouse embryos to adult organs, such as brains or kidneys. iDISCO is modeled on classical histology techniques, facilitating translation of section staining assays to intact tissues, as evidenced by compatibility with 28 antibodies to both endogenous antigens and transgenic reporters like GFP. When applied to degenerating neurons, iDISCO revealed unexpected variability in number of apoptotic neurons within individual sensory ganglia despite tight control of total number in all ganglia. It also permitted imaging of single degenerating axons in adult brain and the first visualization of cleaved Caspase-3 in degenerating embryonic sensory axons in vivo, even single axons. iDISCO enables facile volume imaging of immunolabeled structures in complex tissues. PAPERCLIP:


Asunto(s)
Imagenología Tridimensional/métodos , Inmunohistoquímica , Animales , Embrión de Mamíferos/citología , Inmunohistoquímica/economía , Ratones , Degeneración Nerviosa/patología
13.
EMBO J ; 42(1): e110565, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36377476

RESUMEN

Cortical neuronal networks control cognitive output, but their composition and modulation remain elusive. Here, we studied the morphological and transcriptional diversity of cortical cholinergic VIP/ChAT interneurons (VChIs), a sparse population with a largely unknown function. We focused on VChIs from the whole barrel cortex and developed a high-throughput automated reconstruction framework, termed PopRec, to characterize hundreds of VChIs from each mouse in an unbiased manner, while preserving 3D cortical coordinates in multiple cleared mouse brains, accumulating thousands of cells. We identified two fundamentally distinct morphological types of VChIs, bipolar and multipolar that differ in their cortical distribution and general morphological features. Following mild unilateral whisker deprivation on postnatal day seven, we found after three weeks both ipsi- and contralateral dendritic arborization differences and modified cortical depth and distribution patterns in the barrel fields alone. To seek the transcriptomic drivers, we developed NuNeX, a method for isolating nuclei from fixed tissues, to explore sorted VChIs. This highlighted differentially expressed neuronal structural transcripts, altered exitatory innervation pathways and established Elmo1 as a key regulator of morphology following deprivation.


Asunto(s)
Lóbulo Parietal , Transcriptoma , Ratones , Animales , Interneuronas/fisiología , Colina O-Acetiltransferasa , Colinérgicos/metabolismo , Células Receptoras Sensoriales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(43): e2210122119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36256819

RESUMEN

Hyperexcitability of brain circuits is a common feature of autism spectrum disorders (ASDs). Genetic deletion of a chromatin-binding protein, retinoic acid induced 1 (RAI1), causes Smith-Magenis syndrome (SMS). SMS is a syndromic ASD associated with intellectual disability, autistic features, maladaptive behaviors, overt seizures, and abnormal electroencephalogram (EEG) patterns. The molecular and neural mechanisms underlying abnormal brain activity in SMS remain unclear. Here we show that panneural Rai1 deletions in mice result in increased seizure susceptibility and prolonged hippocampal seizure duration in vivo and increased dentate gyrus population spikes ex vivo. Brain-wide mapping of neuronal activity pinpointed selective cell types within the limbic system, including the hippocampal dentate gyrus granule cells (dGCs) that are hyperactivated by chemoconvulsant administration or sensory experience in Rai1-deficient brains. Deletion of Rai1 from glutamatergic neurons, but not from gamma-aminobutyric acidergic (GABAergic) neurons, was responsible for increased seizure susceptibility. Deleting Rai1 from the Emx1Cre-lineage glutamatergic neurons resulted in abnormal dGC properties, including increased excitatory synaptic transmission and increased intrinsic excitability. Our work uncovers the mechanism of neuronal hyperexcitability in SMS by identifying Rai1 as a negative regulator of dGC intrinsic and synaptic excitability.


Asunto(s)
Síndrome de Smith-Magenis , Ratones , Animales , Síndrome de Smith-Magenis/genética , Transactivadores/genética , Transactivadores/metabolismo , Fenotipo , Modelos Animales de Enfermedad , Cromatina , Hipocampo/metabolismo , Convulsiones/genética , Tretinoina
18.
Cell ; 133(7): 1241-54, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18585357

RESUMEN

During nervous system development, spinal commissural axons project toward and across the ventral midline. They are guided in part by netrin-1, made by midline cells, which attracts the axons by activating the netrin receptor DCC. However, previous studies suggest that additional receptor components are required. Here, we report that the Down's syndrome Cell Adhesion Molecule (DSCAM), a candidate gene implicated in the mental retardation phenotype of Down's syndrome, is expressed on spinal commissural axons, binds netrin-1, and is necessary for commissural axons to grow toward and across the midline. DSCAM and DCC can each mediate a turning response of these neurons to netrin-1. Similarly, Xenopus spinal neurons exogenously expressing DSCAM can be attracted by netrin-1 independently of DCC. These results show that DSCAM is a receptor that can mediate turning responses to netrin-1 and support a key role for netrin/DSCAM signaling in commissural axon guidance in vertebrates.


Asunto(s)
Proteínas de la Membrana/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo , Médula Espinal/embriología , Proteínas Supresoras de Tumor/metabolismo , Animales , Axones/metabolismo , Células COS , Chlorocebus aethiops , Embrión de Mamíferos/metabolismo , Técnicas In Vitro , Proteínas de la Membrana/química , Receptores de Netrina , Netrina-1 , Estructura Terciaria de Proteína , Ratas , Médula Espinal/citología , Médula Espinal/metabolismo , Xenopus
19.
Proc Natl Acad Sci U S A ; 117(20): 11068-11075, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32358193

RESUMEN

The projection targets of a neuronal population are a key feature of its anatomical characteristics. Historically, tissue sectioning, confocal microscopy, and manual scoring of specific regions of interest have been used to generate coarse summaries of mesoscale projectomes. We present here TrailMap, a three-dimensional (3D) convolutional network for extracting axonal projections from intact cleared mouse brains imaged by light-sheet microscopy. TrailMap allows region-based quantification of total axon content in large and complex 3D structures after registration to a standard reference atlas. The identification of axonal structures as thin as one voxel benefits from data augmentation but also requires a loss function that tolerates errors in annotation. A network trained with volumes of serotonergic axons in all major brain regions can be generalized to map and quantify axons from thalamocortical, deep cerebellar, and cortical projection neurons, validating transfer learning as a tool to adapt the model to novel categories of axonal morphology. Speed of training, ease of use, and accuracy improve over existing tools without a need for specialized computing hardware. Given the recent emphasis on genetically and functionally defining cell types in neural circuit analysis, TrailMap will facilitate automated extraction and quantification of axons from these specific cell types at the scale of the entire mouse brain, an essential component of deciphering their connectivity.


Asunto(s)
Axones , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Animales , Mapeo Encefálico/métodos , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/anatomía & histología , Red Nerviosa/diagnóstico por imagen , Redes Neurales de la Computación , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Neuronas
20.
Genes Dev ; 29(8): 785-90, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25838500

RESUMEN

The amyloid precursor protein (APP) has garnered considerable attention due to its genetic links to Alzheimer's disease. Death receptor 6 (DR6) was recently shown to bind APP via the protein extracellular regions, stimulate axonal pruning, and inhibit synapse formation. Here, we report the crystal structure of the DR6 ectodomain in complex with the E2 domain of APP and show that it supports a model for APP-induced dimerization and activation of cell surface DR6.


Asunto(s)
Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Moleculares , Receptores del Factor de Necrosis Tumoral/química , Receptores del Factor de Necrosis Tumoral/metabolismo , Animales , Cristalización , Dimerización , Células HEK293 , Humanos , Ratones , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA