Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
PLoS Biol ; 22(4): e3002572, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38603542

RESUMEN

The circadian clock controls behavior and metabolism in various organisms. However, the exact timing and strength of rhythmic phenotypes can vary significantly between individuals of the same species. This is highly relevant for rhythmically complex marine environments where organismal rhythmic diversity likely permits the occupation of different microenvironments. When investigating circadian locomotor behavior of Platynereis dumerilii, a model system for marine molecular chronobiology, we found strain-specific, high variability between individual worms. The individual patterns were maintained for several weeks. A diel head transcriptome comparison of behaviorally rhythmic versus arrhythmic wild-type worms showed that 24-h cycling of core circadian clock transcripts is identical between both behavioral phenotypes. While behaviorally arrhythmic worms showed a similar total number of cycling transcripts compared to their behaviorally rhythmic counterparts, the annotation categories of their transcripts, however, differed substantially. Consistent with their locomotor phenotype, behaviorally rhythmic worms exhibit an enrichment of cycling transcripts related to neuronal/behavioral processes. In contrast, behaviorally arrhythmic worms showed significantly increased diel cycling for metabolism- and physiology-related transcripts. The prominent role of the neuropeptide pigment-dispersing factor (PDF) in Drosophila circadian behavior prompted us to test for a possible functional involvement of Platynereis pdf. Differing from its role in Drosophila, loss of pdf impacts overall activity levels but shows only indirect effects on rhythmicity. Our results show that individuals arrhythmic in a given process can show increased rhythmicity in others. Across the Platynereis population, rhythmic phenotypes exist as a continuum, with no distinct "boundaries" between rhythmicity and arrhythmicity. We suggest that such diel rhythm breadth is an important biodiversity resource enabling the species to quickly adapt to heterogeneous or changing marine environments. In times of massive sequencing, our work also emphasizes the importance of time series and functional tests.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Humanos , Animales , Proteínas de Drosophila/metabolismo , Ritmo Circadiano/genética , Drosophila/metabolismo , Relojes Circadianos/genética , Actividad Motora , Drosophila melanogaster/metabolismo
2.
Physiology (Bethesda) ; 39(1): 0, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37905983

RESUMEN

One of the biggest environmental alterations we have made to our species is the change in the exposure to light. During the day, we typically sit behind glass windows illuminated by artificial light that is >400 times dimmer and has a very different spectrum than natural daylight. On the opposite end are the nights that are now lit up by several orders of magnitude. This review aims to provide food for thought as to why this matters for humans and other animals. Evidence from behavioral neuroscience, physiology, chronobiology, and molecular biology is increasingly converging on the conclusions that the biological nonvisual functions of light and photosensory molecules are highly complex. The initial work of von Frisch on extraocular photoreceptors in fish, the identification of rhodopsins as the molecular light receptors in animal eyes and eye-like structures and cryptochromes as light sensors in nonmammalian chronobiology, still allowed for the impression that light reception would be a relatively restricted, localized sense in most animals. However, light-sensitive processes and/or sensory proteins have now been localized to many different cell types and tissues. It might be necessary to consider nonlight-responding cells as the exception, rather than the rule.


Asunto(s)
Criptocromos , Células Fotorreceptoras de Invertebrados , Humanos , Animales , Células Fotorreceptoras de Invertebrados/fisiología
3.
Cell ; 142(5): 800-9, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20813265

RESUMEN

The evolution of the highest-order human brain center, the "pallium" or "cortex," remains enigmatic. To elucidate its origins, we set out to identify related brain parts in phylogenetically distant animals, to then unravel common aspects in cellular composition and molecular architecture. Here, we compare vertebrate pallium development to that of the mushroom bodies, sensory-associative brain centers, in an annelid. Using a newly developed protocol for cellular profiling by image registration (PrImR), we obtain a high-resolution gene expression map for the developing annelid brain. Comparison to the vertebrate pallium reveals that the annelid mushroom bodies develop from similar molecular coordinates within a conserved overall molecular brain topology and that their development involves conserved patterning mechanisms and produces conserved neuron types that existed already in the protostome-deuterostome ancestors. These data indicate deep homology of pallium and mushroom bodies and date back the origin of higher brain centers to prebilaterian times.


Asunto(s)
Evolución Biológica , Corteza Cerebral/fisiología , Cuerpos Pedunculados/fisiología , Poliquetos/fisiología , Vertebrados/genética , Animales , Tipificación del Cuerpo , Humanos , Poliquetos/anatomía & histología , Poliquetos/embriología , Poliquetos/genética , Vertebrados/anatomía & histología , Vertebrados/fisiología
4.
Proc Natl Acad Sci U S A ; 119(22): e2115725119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35622889

RESUMEN

Many species synchronize their physiology and behavior to specific hours. It is commonly assumed that sunlight acts as the main entrainment signal for ∼24-h clocks. However, the moon provides similarly regular time information. Consistently, a growing number of studies have reported correlations between diel behavior and lunidian cycles. Yet, mechanistic insight into the possible influences of the moon on ∼24-h timers remains scarce. We have explored the marine bristleworm Platynereis dumerilii to investigate the role of moonlight in the timing of daily behavior. We uncover that moonlight, besides its role in monthly timing, also schedules the exact hour of nocturnal swarming onset to the nights' darkest times. Our work reveals that extended moonlight impacts on a plastic clock that exhibits <24 h (moonlit) or >24 h (no moon) periodicity. Abundance, light sensitivity, and genetic requirement indicate that the Platynereis light receptor molecule r-Opsin1 serves as a receptor that senses moonrise, whereas the cryptochrome protein L-Cry is required to discriminate the proper valence of nocturnal light as either moonlight or sunlight. Comparative experiments in Drosophila suggest that cryptochrome's principle requirement for light valence interpretation is conserved. Its exact biochemical properties differ, however, between species with dissimilar timing ecology. Our work advances the molecular understanding of lunar impact on fundamental rhythmic processes, including those of marine mass spawners endangered by anthropogenic change.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Luna , Poliquetos , Animales , Criptocromos/genética , Criptocromos/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Poliquetos/genética , Poliquetos/fisiología , Opsinas de Bastones/genética , Luz Solar
5.
PLoS Biol ; 19(1): e3001012, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33411725

RESUMEN

Vertebrate behavior is strongly influenced by light. Light receptors, encoded by functional opsin proteins, are present inside the vertebrate brain and peripheral tissues. This expression feature is present from fishes to human and appears to be particularly prominent in diurnal vertebrates. Despite their conserved widespread occurrence, the nonvisual functions of opsins are still largely enigmatic. This is even more apparent when considering the high number of opsins. Teleosts possess around 40 opsin genes, present from young developmental stages to adulthood. Many of these opsins have been shown to function as light receptors. This raises the question of whether this large number might mainly reflect functional redundancy or rather maximally enables teleosts to optimally use the complex light information present under water. We focus on tmt-opsin1b and tmt-opsin2, c-opsins with ancestral-type sequence features, conserved across several vertebrate phyla, expressed with partly similar expression in non-rod, non-cone, non-retinal-ganglion-cell brain tissues and with a similar spectral sensitivity. The characterization of the single mutants revealed age- and light-dependent behavioral changes, as well as an impact on the levels of the preprohormone sst1b and the voltage-gated sodium channel subunit scn12aa. The amount of daytime rest is affected independently of the eyes, pineal organ, and circadian clock in tmt-opsin1b mutants. We further focused on daytime behavior and the molecular changes in tmt-opsin1b/2 double mutants, and found that-despite their similar expression and spectral features-these opsins interact in part nonadditively. Specifically, double mutants complement molecular and behavioral phenotypes observed in single mutants in a partly age-dependent fashion. Our work provides a starting point to disentangle the highly complex interactions of vertebrate nonvisual opsins, suggesting that tmt-opsin-expressing cells together with other visual and nonvisual opsins provide detailed light information to the organism for behavioral fine-tuning. This work also provides a stepping stone to unravel how vertebrate species with conserved opsins, but living in different ecological niches, respond to similar light cues and how human-generated artificial light might impact on behavioral processes in natural environments.


Asunto(s)
Encéfalo/fisiología , Ecosistema , Opsinas/fisiología , Oryzias , Animales , Animales Modificados Genéticamente , Conducta Animal/fisiología , Encéfalo/embriología , Embrión no Mamífero , Interacción Gen-Ambiente , Opsinas/genética , Oryzias/embriología , Oryzias/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo
6.
EMBO Rep ; 23(5): e51528, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35233929

RESUMEN

Mammalian and fish pineals play a key role in adapting behaviour to the ambient light conditions through the release of melatonin. In mice, light inhibits nocturnal locomotor activity via the non-visual photoreceptor Melanopsin. In contrast to the extensively studied function of Melanopsin in the indirect regulation of the rodent pineal, its role in the intrinsically photosensitive zebrafish pineal has not been elucidated. Therefore, it is not evident if the light signalling mechanism is conserved between distant vertebrates, and how Melanopsin could affect diurnal behaviour. A double knockout of melanopsins (opn4.1-opn4xb) was generated in the diurnal zebrafish, which manifests attenuated locomotor activity during the wake state. Transcriptome sequencing gave insight into pathways downstream of Melanopsin, implying that sustained repression of the melatonin pathway is required to elevate locomotor activity during the diurnal wake state. Moreover, we show that light induces locomotor activity during the diurnal wake state in an intensity-dependent manner. These observations suggest a common Melanopsin-driven mechanism between zebrafish and mammals, while the diurnal and nocturnal chronotypes are inversely regulated downstream of melatonin.


Asunto(s)
Melatonina , Pez Cebra , Animales , Locomoción , Mamíferos , Ratones , Opsinas de Bastones/genética , Pez Cebra/genética
7.
Nature ; 540(7631): 69-73, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27871090

RESUMEN

Organisms use endogenous clocks to anticipate regular environmental cycles, such as days and tides. Natural variants resulting in differently timed behaviour or physiology, known as chronotypes in humans, have not been well characterized at the molecular level. We sequenced the genome of Clunio marinus, a marine midge whose reproduction is timed by circadian and circalunar clocks. Midges from different locations show strain-specific genetic timing adaptations. We examined genetic variation in five C. marinus strains from different locations and mapped quantitative trait loci for circalunar and circadian chronotypes. The region most strongly associated with circadian chronotypes generates strain-specific differences in the abundance of calcium/calmodulin-dependent kinase II.1 (CaMKII.1) splice variants. As equivalent variants were shown to alter CaMKII activity in Drosophila melanogaster, and C. marinus (Cma)-CaMKII.1 increases the transcriptional activity of the dimer of the circadian proteins Cma-CLOCK and Cma-CYCLE, we suggest that modulation of alternative splicing is a mechanism for natural adaptation in circadian timing.


Asunto(s)
Aclimatación/genética , Chironomidae/genética , Relojes Circadianos/genética , Ritmo Circadiano/genética , Genoma de los Insectos/genética , Genómica , Olas de Marea , Empalme Alternativo/genética , Animales , Proteínas CLOCK/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Chironomidae/clasificación , Chironomidae/fisiología , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Estudios de Asociación Genética , Variación Genética , Masculino , Luna , Fenotipo , Sitios de Carácter Cuantitativo/genética , Reproducción/genética , Reproducción/fisiología , Especificidad de la Especie , Factores de Tiempo , Transcripción Genética
8.
Mol Ecol ; 30(5): 1264-1280, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33410230

RESUMEN

Genetic divergence of populations in the presence of gene flow is a central theme in speciation research. Theory predicts that divergence can happen with full range overlap - in sympatry - driven by ecological factors, but there are few empirical examples of how ecologically divergent selection can overcome gene flow and lead to reproductive isolation. In the marine midge Clunio marinus (Diptera: Chironomidae) reproduction is ecologically restricted to the time of the lowest tides, which is ensured through accurate control of development and adult emergence by circalunar and circadian clocks. As tidal regimes differ along the coastline, locally adapted timing strains of C. marinus are found in different sites across Europe. At the same time, ecologically suitable low tides occur at both full and new moon and twice a day, providing C. marinus with four nonoverlapping temporal niches at every geographic location. Along the coast of Brittany, which is characterized by a steep gradient in timing of the tides, we found an unusually large number of differentially adapted timing strains, and the first known instances of sympatric C. marinus strains occupying divergent temporal niches. Analysis of mitochondrial genotypes suggests that these timing strains originated from a single recent colonization event. Nuclear genotypes show strong gene flow, sympatric timing strains being the least differentiated. Even when sympatric strains exist in nonoverlapping temporal niches, timing adaptations do not result in genome-wide genetic divergence, suggesting timing adaptations are maintained by permanent ecological selection. This constitutes a model case for incipient ecological divergence with gene flow.


Asunto(s)
Chironomidae , Relojes Circadianos , Animales , Europa (Continente) , Flujo Génico , Especiación Genética , Insectos
10.
Nat Methods ; 14(10): 995-1002, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28825703

RESUMEN

Standard animal behavior paradigms incompletely mimic nature and thus limit our understanding of behavior and brain function. Virtual reality (VR) can help, but it poses challenges. Typical VR systems require movement restrictions but disrupt sensorimotor experience, causing neuronal and behavioral alterations. We report the development of FreemoVR, a VR system for freely moving animals. We validate immersive VR for mice, flies, and zebrafish. FreemoVR allows instant, disruption-free environmental reconfigurations and interactions between real organisms and computer-controlled agents. Using the FreemoVR platform, we established a height-aversion assay in mice and studied visuomotor effects in Drosophila and zebrafish. Furthermore, by photorealistically mimicking zebrafish we discovered that effective social influence depends on a prospective leader balancing its internally preferred directional choice with social interaction. FreemoVR technology facilitates detailed investigations into neural function and behavior through the precise manipulation of sensorimotor feedback loops in unrestrained animals.


Asunto(s)
Drosophila melanogaster/fisiología , Ratones/fisiología , Actividad Motora , Conducta Espacial , Interfaz Usuario-Computador , Pez Cebra/fisiología , Animales , Conducta Animal , Masculino , Ratones Endogámicos C57BL
11.
BMC Biol ; 16(1): 41, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29669554

RESUMEN

BACKGROUND: The presence of photoreceptive molecules outside the eye is widespread among animals, yet their functions in the periphery are less well understood. Marine organisms, such as annelid worms, exhibit a 'shadow reflex', a defensive withdrawal behaviour triggered by a decrease in illumination. Herein, we examine the cellular and molecular underpinnings of this response, identifying a role for a photoreceptor molecule of the Go-opsin class in the shadow response of the marine bristle worm Platynereis dumerilii. RESULTS: We found Pdu-Go-opsin1 expression in single specialised cells located in adult Platynereis head and trunk appendages, known as cirri. Using gene knock-out technology and ablation approaches, we show that the presence of Go-opsin1 and the cirri is necessary for the shadow reflex. Consistently, quantification of the shadow reflex reveals a chromatic dependence upon light of approximately 500 nm in wavelength, matching the photoexcitation characteristics of the Platynereis Go-opsin1. However, the loss of Go-opsin1 does not abolish the shadow reflex completely, suggesting the existence of a compensatory mechanism, possibly acting through a ciliary-type opsin, Pdu-c-opsin2, with a Lambdamax of approximately 490 nm. CONCLUSIONS: We show that a Go-opsin is necessary for the shadow reflex in a marine annelid, describing a functional example for a peripherally expressed photoreceptor, and suggesting that, in different species, distinct opsins contribute to varying degrees to the shadow reflex.


Asunto(s)
Anélidos/genética , Opsinas/genética , Animales , Anélidos/clasificación , Evolución Molecular , Filogenia
12.
PLoS Biol ; 11(6): e1001585, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23776409

RESUMEN

The functional principle of the vertebrate brain is often paralleled to a computer: information collected by dedicated devices is processed and integrated by interneuron circuits and leads to output. However, inter- and motorneurons present in today's vertebrate brains are thought to derive from neurons that combined sensory, integration, and motor function. Consistently, sensory inter-motorneurons have been found in the simple nerve nets of cnidarians, animals at the base of the evolutionary lineage. We show that light-sensory motorneurons and light-sensory interneurons are also present in the brains of vertebrates, challenging the paradigm that information processing and output circuitry in the central brain is shielded from direct environmental influences. We investigated two groups of nonvisual photopigments, VAL- and TMT-Opsins, in zebrafish and medaka fish; two teleost species from distinct habitats separated by over 300 million years of evolution. TMT-Opsin subclasses are specifically expressed not only in hypothalamic and thalamic deep brain photoreceptors, but also in interneurons and motorneurons with no known photoreceptive function, such as the typeXIV interneurons of the fish optic tectum. We further show that TMT-Opsins and Encephalopsin render neuronal cells light-sensitive. TMT-Opsins preferentially respond to blue light relative to rhodopsin, with subclass-specific response kinetics. We discovered that tmt-opsins co-express with val-opsins, known green light receptors, in distinct inter- and motorneurons. Finally, we show by electrophysiological recordings on isolated adult tectal slices that interneurons in the position of typeXIV neurons respond to light. Our work supports "sensory-inter-motorneurons" as ancient units for brain evolution. It also reveals that vertebrate inter- and motorneurons are endowed with an evolutionarily ancient, complex light-sensory ability that could be used to detect changes in ambient light spectra, possibly providing the endogenous equivalent to an optogenetic machinery.


Asunto(s)
Encéfalo/citología , Encéfalo/metabolismo , Interneuronas/metabolismo , Neuronas Motoras/metabolismo , Opsinas/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Vertebrados/metabolismo , Envejecimiento/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/efectos de la radiación , Línea Celular , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Colina O-Acetiltransferasa/metabolismo , Secuencia Conservada , Humanos , Interneuronas/citología , Interneuronas/efectos de la radiación , Larva/metabolismo , Luz , Ratones , Datos de Secuencia Molecular , Neuronas Motoras/citología , Neuronas Motoras/efectos de la radiación , Opsinas/química , Opsinas/genética , Oryzias/metabolismo , Células Fotorreceptoras de Vertebrados/citología , Células Fotorreceptoras de Vertebrados/efectos de la radiación , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de Proteína , Pez Cebra/metabolismo
13.
Proc Natl Acad Sci U S A ; 110(1): 193-8, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23284166

RESUMEN

Research in eye evolution has mostly focused on eyes residing in the head. In contrast, noncephalic light sensors are far less understood and rather regarded as evolutionary innovations. We established stable transgenesis in the annelid Platynereis, a reference species for evolutionary and developmental comparisons. EGFP controlled by cis-regulatory elements of r-opsin, a characteristic marker for rhabdomeric photoreceptors, faithfully recapitulates known r-opsin expression in the adult eyes, and marks a pair of pigment-associated frontolateral eyelets in the brain. Unexpectedly, transgenic animals revealed an additional series of photoreceptors in the ventral nerve cord as well as photoreceptors that are located in each pair of the segmental dorsal appendages (notopodia) and project into the ventral nerve cord. Consistent with a photosensory function of these noncephalic cells, decapitated animals display a clear photoavoidance response. Molecular analysis of the receptors suggests that they differentiate independent of pax6, a gene involved in early eye development of many metazoans, and that the ventral cells may share origins with the Hesse organs in the amphioxus neural tube. Finally, expression analysis of opn4×-2 and opn4m-2, two zebrafish orthologs of Platynereis r-opsin, reveals that these genes share expression in the neuromasts, known mechanoreceptors of the lateral line peripheral nervous system. Together, this establishes that noncephalic photoreceptors are more widespread than assumed, and may even reflect more ancient aspects of sensory systems. Our study marks significant advance for the understanding of photoreceptor cell (PRC) evolution and development and for Platynereis as a functional lophotrochozoan model system.


Asunto(s)
Evolución Biológica , Opsinas/metabolismo , Células Fotorreceptoras de Invertebrados/fisiología , Poliquetos/fisiología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Cartilla de ADN/genética , Perfilación de la Expresión Génica , Técnicas de Transferencia de Gen , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Hibridación in Situ , Microscopía Confocal , Datos de Secuencia Molecular , Opsinas/genética , Análisis de Secuencia de ADN , Pez Cebra
14.
Front Zool ; 10(1): 52, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-24007384

RESUMEN

INTRODUCTION: In Annelida two types of photoreceptor cells (PRCs) are regarded as generally present, rhabdomeric and ciliary PRCs. In certain taxa, however, an additional type of PRC may occur, the so called phaosomal PRC. Whereas the former two types of PRCs are always organized as an epithelium with their sensory processes projecting into an extracellular cavity formed by the PRCs and (pigmented) supportive cells, phaosomes are seemingly intracellular vacuoles housing the sensory processes. Phaosomal PRCs are the only type of PRC found in one major annelid group, Clitellata. Several hypotheses have been put forward explaining the evolutionary origin of the clitellate phaosomes. To elucidate the evolution of clitellate PRC and eyes the leech Helobdella robusta, for which a sequenced genome is available, was chosen. RESULTS: TEM observations showed that extraocular and ocular PRCs are structurally identical. Bioinformatic analyses revealed predictions for four opsin genes, three of which could be amplified. All belong to the rhabdomeric opsin family and phylogenetic analyses showed them in a derived position within annelid opsins. Gene expression studies showed two of them expressed in the eye and in the extraocular PRCs. Polychaete eye-typic key enzymes for ommochromme and pterin shading pigments synthesis are not expressed in leech eyes. CONCLUSIONS: By comparative gene-expression studies we herein provide strong evidence that the phaosomal PRCs typical of Clitellata are derived from the rhabdomeric PRCs characteristic for polychaete adult eyes. Thus, they represent a highly derived type of PRC that evolved in the stem lineage of Clitellata rather than another, primitive type of PRC in Metazoa. Evolution of these PRCs in Clitellata is related to a loss of the primary eyes and most of their photoreceptive elements except for the rhabdomeric PRCs. Most likely this happened while changing to an endobenthic mode of life. This hypothesis of PRC evolution is in accordance with a recently published phylogeny of Annelida based on phylogenomic data. The data provide a nice example how morphologically highly divergent light sensitive structures emerged from a standard type of photoreceptor cell.

15.
Bioessays ; 33(3): 165-72, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21254149

RESUMEN

The marine ecosystem is governed by a multitude of environmental cycles, all of which are linked to the periodical recurrence of the sun or the moon. In accordance with these cycles, marine species exhibit a variety of biological rhythms, ranging from circadian and circatidal rhythms to circalunar and seasonal rhythms. However, our current molecular understanding of biological rhythms and clocks is largely restricted to solar-controlled circadian and seasonal rhythms in land model species. Here, we discuss the first molecular data emerging for circalunar and circatidal rhythms and present selected species suitable for further molecular analyses. We argue that a re-focus on marine species will be crucial to understand the principles, interactions and evolution of rhythms that govern a broad range of eukaryotes, including ourselves.


Asunto(s)
Organismos Acuáticos/fisiología , Evolución Biológica , Ritmo Circadiano , Animales , Relojes Biológicos , Peces/fisiología , Biología Marina , Luna , Olas de Marea
16.
Ann Rev Mar Sci ; 15: 509-538, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36028229

RESUMEN

The regular movements of waves and tides are obvious representations of the oceans' rhythmicity. But the rhythms of marine life span across ecological niches and timescales, including short (in the range of hours) and long (in the range of days and months) periods. These rhythms regulate the physiology and behavior of individuals, as well as their interactions with each other and with the environment. This review highlights examples of rhythmicity in marine animals and algae that represent important groups of marine life across different habitats. The examples cover ecologically highly relevant species and a growing number of laboratory model systems that are used to disentangle key mechanistic principles. The review introduces fundamental concepts of chronobiology, such as the distinction between rhythmic and endogenous oscillator-driven processes. It also addresses the relevance of studying diverse rhythms and oscillators, as well as their interconnection, for making better predictions of how species will respond to environmental perturbations, including climate change. As the review aims to address scientists from the diverse fields of marine biology, ecology, and molecular chronobiology, all of which have their own scientific terms, we provide definitions of key terms throughout the article.


Asunto(s)
Organismos Acuáticos , Relojes Biológicos , Animales , Organismos Acuáticos/fisiología , Biología Marina , Océanos y Mares , Ecosistema
17.
Integr Comp Biol ; 63(2): 372-381, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36866518

RESUMEN

Access to newer, fast, and cheap sequencing techniques, particularly on the single-cell level, have made transcriptomic data of tissues or single cells accessible to many researchers. As a consequence, there is an increased need for in situ visualization of gene expression or encoded proteins to validate, localize, or help interpret such sequencing data, as well as put them in context with cellular proliferation. A particular challenge for labeling and imaging transcripts are complex tissues that are often opaque and/or pigmented, preventing easy visual inspection. Here, we introduce a versatile protocol that combines in situ hybridization chain reaction, immunohistochemistry, and proliferative cell labeling using 5-ethynyl-2'-deoxyuridine, and demonstrate its compatibility with tissue clearing. As a proof-of-concept, we show that our protocol allows for the parallel analysis of cell proliferation, gene expression, and protein localization in bristleworm heads and trunks.


Asunto(s)
Perfilación de la Expresión Génica , Animales , Inmunohistoquímica , Proliferación Celular
18.
Curr Biol ; 32(22): R1269-R1271, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36413969

RESUMEN

Grass puffers are fish that engage in mass spawning controlled by the phase of the moon. A new study shows that prostaglandins released by males and females fine tune these events. In addition, regulation of gnrh1 by a transcription factor expressed in a semilunar rhythm suggests a timing signal for the long-term coordination of gonadal maturation.


Asunto(s)
Luna , Periodicidad , Animales , Femenino , Masculino , Gónadas , Peces , Regulación de la Expresión Génica
19.
Life Sci Alliance ; 5(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35697381

RESUMEN

Mitochondria are fundamental for life and require balanced ion exchange to maintain proper functioning. The mitochondrial cation exchanger LETM1 sparks interest because of its pathophysiological role in seizures in the Wolf Hirschhorn Syndrome (WHS). Despite observation of sleep disorganization in epileptic WHS patients, and growing studies linking mitochondria and epilepsy to circadian rhythms, LETM1 has not been studied from the chronobiological perspective. Here we established a viable letm1 knock-out, using the diurnal vertebrate Danio rerio to study the metabolic and chronobiological consequences of letm1 deficiency. We report diurnal rhythms of Letm1 protein levels in wild-type fish. We show that mitochondrial nucleotide metabolism is deregulated in letm1-/- mutant fish, the rate-limiting enzyme of NAD+ production is up-regulated, while NAD+ and NADH pools are reduced. These changes were associated with increased expression amplitude of circadian core clock genes in letm1-/- compared with wild-type under light/dark conditions, suggesting decreased NAD(H) levels as a possible mechanism for circadian system perturbation in Letm1 deficiency. Replenishing NAD pool may ameliorate WHS-associated sleep and neurological disorders.


Asunto(s)
NAD , Síndrome de Wolf-Hirschhorn , Animales , Proteínas de Unión al Calcio/metabolismo , Cationes , Ritmo Circadiano/genética , Proteínas de la Membrana/metabolismo , NAD/metabolismo , Síndrome de Wolf-Hirschhorn/genética , Síndrome de Wolf-Hirschhorn/metabolismo , Pez Cebra
20.
Nat Commun ; 13(1): 5220, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064778

RESUMEN

The moon's monthly cycle synchronizes reproduction in countless marine organisms. The mass-spawning bristle worm Platynereis dumerilii uses an endogenous monthly oscillator set by full moon to phase reproduction to specific days. But how do organisms recognize specific moon phases? We uncover that the light receptor L-Cryptochrome (L-Cry) discriminates between different moonlight durations, as well as between sun- and moonlight. A biochemical characterization of purified L-Cry protein, exposed to naturalistic sun- or moonlight, reveals the formation of distinct sun- and moonlight states characterized by different photoreduction- and recovery kinetics of L-Cry's co-factor Flavin Adenine Dinucleotide. In Platynereis, L-Cry's sun- versus moonlight states correlate with distinct subcellular localizations, indicating different signaling. In contrast, r-Opsin1, the most abundant ocular opsin, is not required for monthly oscillator entrainment. Our work reveals a photo-ecological concept for natural light interpretation involving a "valence interpreter" that provides entraining photoreceptor(s) with light source and moon phase information.


Asunto(s)
Criptocromos , Luna , Luz , Opsinas , Reproducción , Luz Solar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA