Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446349

RESUMEN

The microspore can follow two different developmental pathways. In vivo microspores follow the gametophytic program to produce pollen grains. In vitro, isolated microspores can be reprogrammed by stress treatments and follow the embryogenic program, producing doubled-haploid embryos. In the present study, we analyzed the dynamics and role of endogenous auxin in microspore development during these two different scenarios, in Brassica napus. We analyzed auxin concentration, cellular accumulation, the expression of the TAA1 auxin biosynthesis gene, and the PIN1-like efflux carrier gene, as well as the effects of inhibiting auxin biosynthesis by kynurenine on microspore embryogenesis. During the gametophytic pathway, auxin levels and TAA1 and PIN1-like expression were high at early stages, in tetrads and tapetum, while they progressively decreased during gametogenesis in both pollen and tapetum cells. In contrast, in microspore embryogenesis, TAA1 and PIN1-like genes were upregulated, and auxin concentration increased from the first embryogenic divisions. Kynurenine treatment decreased both embryogenesis induction and embryo production, indicating that auxin biosynthesis is required for microspore embryogenesis initiation and progression. The findings indicate that auxin exhibits two opposite profiles during these two microspore developmental pathways, which determine the different cell fates of the microspore.


Asunto(s)
Ácidos Indolacéticos , Quinurenina , Ácidos Indolacéticos/metabolismo , Quinurenina/metabolismo , Proteínas de Plantas/genética , Polen/genética , Polen/metabolismo , Desarrollo Embrionario
2.
New Phytol ; 236(5): 1888-1907, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35872574

RESUMEN

Root-knot nematodes (RKNs) induce giant cells (GCs) within galls which are characterized by large-scale gene repression at early stages. However, the epigenetic mechanism(s) underlying gene silencing is (are) still poorly characterized. DNA methylation in Arabidopsis galls induced by Meloidogyne javanica was studied at crucial infection stages (3 d post-infection (dpi) and 14 dpi) using enzymatic, cytological, and sequencing approaches. DNA methyltransferase mutants (met1, cmt2, cmt3, cmt2/3, drm1/2, ddc) and a DNA demethylase mutant (ros1), were analyzed for RKN resistance/tolerance, and galls were characterized by confocal microscopy and RNA-seq. Early galls were hypermethylated, and the GCs were found to be the major contributors to this hypermethylation, consistent with the very high degree of gene repression they exhibit. By contrast, medium/late galls showed no global increase in DNA methylation compared to uninfected roots, but exhibited large-scale redistribution of differentially methylated regions (DMRs). In line with these findings, it was also shown that DNA methylation and demethylation mutants showed impaired nematode reproduction and gall/GC-development. Moreover, siRNAs that were exclusively present in early galls accumulated at hypermethylated DMRs, overlapping mostly with retrotransposons in the CHG/CG contexts that might be involved in their repression, contributing to their stability/genome integrity. Promoter/gene methylation correlated with differentially expressed genes encoding proteins with basic cell functions. Both mechanisms are consistent with reprogramming host tissues for gall/GC formation. In conclusion, RNA-directed DNA methylation (RdDM; DRM2/1) pathways, maintenance methyltransferases (MET1/CMT3) and demethylation (ROS1) appear to be prominent mechanisms driving a dynamic regulation of the epigenetic landscape during RKN infection.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Tylenchoidea , Animales , Arabidopsis/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Metilación de ADN/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Tylenchoidea/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo
3.
Environ Monit Assess ; 195(1): 195, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36512105

RESUMEN

Biomonitoring is a valuable tool for assessing the presence and effects of air pollutants such as heavy metals (HM); due to their toxicity and stability, these compounds can affect human health and the balance of ecosystems. To assess its potential as a sentinel organism of HM pollution, the wild plant Gnaphalium lavandulifolium was exposed to four sites in the metropolitan area of México Valley (MAMV): Altzomoni (ALT) Coyoacán (COY), Ecatepec (ECA), and Tlalnepantla (TLA) during 2, 4, and 8 weeks, between October and November 2019. Control plants remained under controlled conditions. The chemical analysis determined twelve HM (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn) in the leaves. Macroscopic damage to the leaves, later determined in semi-thin sections under light microscopy, lead to a finer analysis. Transmission electron microscope (TEM) showed major structural changes: chromatin condensation, protoplast shrinkage, cytoplasm vacuolization, cell wall thinning, decreased number and size of starch grains, and plastoglobules in chloroplasts. All these characteristics of stress-induced programed cell death (sPCD) were related to the significant increase of toxic HM in the leaves of the exposed plants compared to the control (p < 0.05). Immunohistochemistry revealed a significant amount of proteases with caspase 3-like activity in ECA and TLA samples during long exposure times. Ultrastructural changes and sPCD features detected confirmed the usefulness of G. lavandulifolium as a good biomonitor of HM contamination. They supported the possibility of considering subcellular changes as markers of abiotic stress conditions in plants.


Asunto(s)
Gnaphalium , Metales Pesados , Humanos , Monitoreo Biológico , Monitoreo del Ambiente , Ecosistema , México , Metales Pesados/toxicidad , Metales Pesados/análisis
4.
Plant Cell Physiol ; 61(12): 2097-2110, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33057654

RESUMEN

Microspore embryogenesis is a biotechnological process that allows us to rapidly obtain doubled-haploid plants for breeding programs. The process is initiated by the application of stress treatment, which reprograms microspores to embark on embryonic development. Typically, a part of the microspores undergoes cell death that reduces the efficiency of the process. Metacaspases (MCAs), a phylogenetically broad group of cysteine proteases, and autophagy, the major catabolic process in eukaryotes, are critical regulators of the balance between cell death and survival in various organisms. In this study, we analyzed the role of MCAs and autophagy in cell death during stress-induced microspore embryogenesis in Brassica napus. We demonstrate that this cell death is accompanied by the transcriptional upregulation of three BnMCA genes (BnMCA-Ia, BnMCA-IIa and BnMCA-IIi), an increase in MCA proteolytic activity and the activation of autophagy. Accordingly, inhibition of autophagy and MCA activity, either individually or in combination, suppressed cell death and increased the number of proembryos, indicating that both components play a pro-cell death role and account for decreased efficiency of early embryonic development. Therefore, MCAs and/or autophagy can be used as new biotechnological targets to improve in vitro embryogenesis in Brassica species and doubled-haploid plant production in crop breeding and propagation programs.


Asunto(s)
Muerte Celular Autofágica , Brassica napus/crecimiento & desarrollo , Caspasas/metabolismo , Proteínas de Plantas/metabolismo , Polen/fisiología , Semillas/crecimiento & desarrollo , Brassica napus/fisiología , Regulación de la Expresión Génica de las Plantas , Semillas/fisiología , Estrés Fisiológico
5.
J Exp Bot ; 72(22): 7808-7825, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34338766

RESUMEN

Plant in vitro regeneration systems, such as somatic embryogenesis, are essential in breeding; they permit propagation of elite genotypes, production of doubled-haploids, and regeneration of whole plants from gene editing or transformation events. However, in many crop and forest species, somatic embryogenesis is highly inefficient. We report a new strategy to improve in vitro embryogenesis using synthetic small molecule inhibitors of mammalian glycogen synthase kinase 3ß (GSK-3ß), never used in plants. These inhibitors increased in vitro embryo production in three different systems and species, microspore embryogenesis of Brassica napus and Hordeum vulgare, and somatic embryogenesis of Quercus suber. TDZD-8, a representative compound of the molecules tested, inhibited GSK-3 activity in microspore cultures, and increased expression of embryogenesis genes FUS3, LEC2, and AGL15. Plant GSK-3 kinase BIN2 is a master regulator of brassinosteroid (BR) signalling. During microspore embryogenesis, BR biosynthesis and signalling genes CPD, GSK-3-BIN2, BES1, and BZR1 were up-regulated and the BAS1 catabolic gene was repressed, indicating activation of the BR pathway. TDZD-8 increased expression of BR signalling elements, mimicking BR effects. The findings support that the small molecule inhibitors promoted somatic embryogenesis by activating the BR pathway, opening up the way for new strategies using GSK-3ß inhibitors that could be extended to other species.


Asunto(s)
Reprogramación Celular , Glucógeno Sintasa Quinasa 3 , Animales , Desarrollo Embrionario , Bosques , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta/genética
6.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34281171

RESUMEN

Although epigenetic modifications have been intensely investigated over the last decade due to their role in crop adaptation to rapid climate change, it is unclear which epigenetic changes are heritable and therefore transmitted to their progeny. The identification of epigenetic marks that are transmitted to the next generations is of primary importance for their use in breeding and for the development of new cultivars with a broad-spectrum of tolerance/resistance to abiotic and biotic stresses. In this review, we discuss general aspects of plant responses to environmental stresses and provide an overview of recent findings on the role of transgenerational epigenetic modifications in crops. In addition, we take the opportunity to describe the aims of EPI-CATCH, an international COST action consortium composed by researchers from 28 countries. The aim of this COST action launched in 2020 is: (1) to define standardized pipelines and methods used in the study of epigenetic mechanisms in plants, (2) update, share, and exchange findings in epigenetic responses to environmental stresses in plants, (3) develop new concepts and frontiers in plant epigenetics and epigenomics, (4) enhance dissemination, communication, and transfer of knowledge in plant epigenetics and epigenomics.


Asunto(s)
Productos Agrícolas/genética , Estrés Fisiológico/genética , Aclimatación/genética , Adaptación Fisiológica/genética , Metilación de ADN , Epigénesis Genética , Epigenómica/métodos , Regulación de la Expresión Génica de las Plantas , Patrón de Herencia , Fitomejoramiento/métodos
7.
J Exp Bot ; 70(11): 2965-2978, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753698

RESUMEN

Under stress, isolated microspores are reprogrammed in vitro towards embryogenesis, producing doubled haploid plants that are useful biotechnological tools in plant breeding as a source of new genetic variability, fixed in homozygous plants in only one generation. Stress-induced cell death and low rates of cell reprogramming are major factors that reduce yield. Knowledge gained in recent years has revealed that initiation and progression of microspore embryogenesis involve a complex network of factors, whose roles are not yet well understood. Here, I review recent findings on the determinant factors underlying stress-induced microspore embryogenesis, focusing on the role of autophagy, cell death, auxin, chromatin modifications, and the cell wall. Autophagy and cell death proteases are crucial players in the response to stress, while cell reprogramming and acquisition of totipotency are regulated by hormonal and epigenetic mechanisms. Auxin biosynthesis, transport, and action are required for microspore embryogenesis. Initial stages involve DNA hypomethylation, H3K9 demethylation, and H3/H4 acetylation. Cell wall remodelling, with pectin de-methylesterification and arabinogalactan protein expression, is necessary for embryo development. Recent reports show that treatments with small modulators of autophagy, proteases, and epigenetic marks reduce cell death and enhance embryogenesis initiation in several crops, opening up new possibilities for improving in vitro embryo production in breeding programmes.


Asunto(s)
Reprogramación Celular , Productos Agrícolas/fisiología , Fitomejoramiento , Polen/embriología , Estrés Fisiológico
8.
J Exp Bot ; 69(6): 1387-1402, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29309624

RESUMEN

Microspores are reprogrammed towards embryogenesis by stress. Many microspores die after this stress, limiting the efficiency of microspore embryogenesis. Autophagy is a degradation pathway that plays critical roles in stress response and cell death. In animals, cathepsins have an integral role in autophagy by degrading autophagic material; less is known in plants. Plant cathepsins are papain-like C1A cysteine proteases involved in many physiological processes, including programmed cell death. We have analysed the involvement of autophagy in cell death, in relation to cathepsin activation, during stress-induced microspore embryogenesis in Hordeum vulgare. After stress, reactive oxygen species (ROS) and cell death increased and autophagy was activated, including HvATG5 and HvATG6 up-regulation and increase of ATG5, ATG8, and autophagosomes. Concomitantly, cathepsin L/F-, B-, and H-like activities were induced, cathepsin-like genes HvPap-1 and HvPap-6 were up-regulated, and HvPap-1, HvPap-6, and HvPap-19 proteins increased and localized in the cytoplasm, resembling autophagy structures. Inhibitors of autophagy and cysteine proteases reduced cell death and promoted embryogenesis. The findings reveal a role for autophagy in stress-induced cell death during microspore embryogenesis, and the participation of cathepsins. Similar patterns of activation, expression, and localization suggest a possible connection between cathepsins and autophagy. The results open up new possibilities to enhance microspore embryogenesis efficiency with autophagy and/or cysteine protease modulators.


Asunto(s)
Autofagia , Catepsinas/metabolismo , Muerte Celular , Regulación de la Expresión Génica de las Plantas , Hordeum/fisiología , Polen/embriología , Hordeum/enzimología , Estrés Fisiológico
9.
J Exp Bot ; 69(6): 1335-1353, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29474677

RESUMEN

Autophagy is a eukaryotic catabolic pathway essential for growth and development. In plants, it is activated in response to environmental cues or developmental stimuli. However, in contrast to other eukaryotic systems, we know relatively little regarding the molecular players involved in autophagy and the regulation of this complex pathway. In the framework of the COST (European Cooperation in Science and Technology) action TRANSAUTOPHAGY (2016-2020), we decided to review our current knowledge of autophagy responses in higher plants, with emphasis on knowledge gaps. We also assess here the potential of translating the acquired knowledge to improve crop plant growth and development in a context of growing social and environmental challenges for agriculture in the near future.


Asunto(s)
Autofagia , Protección de Cultivos/métodos , Productos Agrícolas/metabolismo , Producción de Cultivos , Productos Agrícolas/inmunología , Nutrientes/metabolismo
11.
BMC Plant Biol ; 16(1): 176, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27514748

RESUMEN

BACKGROUND: Pectins are one of the main components of plant cell walls. They are secreted to the wall as highly methylesterified forms that can be de-esterified by pectin methylesterases (PMEs). The degree of methylesterification of pectins changes during development, PMEs are involved in the cell wall remodeling that occurs during diverse plant developmental processes. Nevertheless, the functional meaning of pectin-related wall remodeling in different cell types and processes remains unclear. In vivo, the microspore follows the gametophytic pathway and differentiates to form the pollen grain. In vitro, the microspore can be reprogrammed by stress treatments becoming a totipotent cell that starts to proliferate and follows the embryogenic pathway, a process known as microspore embryogenesis. RESULTS: To investigate if the change of developmental programme of the microspore towards embryogenesis involves changes in pectin esterification levels, which would cause the cell wall remodeling during the process, in the present study, dynamics of PME expression and degrees of pectin esterification have been analysed during microspore embryogenesis and compared with the gametophytic development, in Brassica napus. A multidisciplinary approach has been adopted including BnPME gene expression analysis by quantitative RT-PCR, fluorescence in situ hybridization, immuno-dot-blot and immunofluorescence with JIM5 and JIM7 antibodies to reveal low and highly-methylesterified pectins. The results showed that cell differentiation at advanced developmental stages involved induction of BnPME expression and pectin de-esterification, processes that were also detected in zygotic embryos, providing additional evidence that microspore embryogenesis mimics zygotic embryogenesis. By contrast, early microspore embryogenesis, totipotency and proliferation were associated with low expression of BnPME and high levels of esterified pectins. CONCLUSIONS: The results show that the change of developmental programme of the microspore involves changes in pectin esterification associated with proliferation and differentiation events, which may cause the cell wall remodeling during the process. The findings indicate pectin-related modifications in the cell wall during microspore embryogenesis, providing new insights into the role of pectin esterification and cell wall configuration in microspore totipotency, embryogenesis induction and progression.


Asunto(s)
Brassica napus/embriología , Brassica napus/enzimología , Diferenciación Celular , Esterasas/metabolismo , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Brassica napus/citología , Brassica napus/genética , Esterasas/genética , Esterificación , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética
12.
Plant Cell Physiol ; 56(7): 1401-17, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25907568

RESUMEN

Isolated microspores are reprogrammed in vitro by stress, becoming totipotent cells and producing embryos and plants via a process known as microspore embryogenesis. Despite the abundance of data on auxin involvement in plant development and embryogenesis, no data are available regarding the dynamics of auxin concentration, cellular localization and the expression of biosynthesis genes during microspore embryogenesis. This work involved the analysis of auxin concentration and cellular accumulation; expression of TAA1 and NIT2 encoding enzymes of two auxin biosynthetic pathways; expression of the PIN1-like efflux carrier; and the effects of inhibition of auxin transport and action by N-1-naphthylphthalamic acid (NPA) and α-(p-chlorophenoxy) isobutyric acid (PCIB) during Brassica napus microspore embryogenesis. The results indicated de novo auxin synthesis after stress-induced microspore reprogramming and embryogenesis initiation, accompanying the first cell divisions. The progressive increase of auxin concentration during progression of embryogenesis correlated with the expression patterns of TAA1 and NIT2 genes of auxin biosynthetic pathways. Auxin was evenly distributed in early embryos, whereas in heart/torpedo embryos auxin was accumulated in apical and basal embryo regions. Auxin efflux carrier PIN1-like gene expression was induced in early multicellular embryos and increased at the globular/torpedo embryo stages. Inhibition of polar auxin transport (PAT) and action, by NPA and PCIB, impaired embryo development, indicating that PAT and auxin action are required for microspore embryo progression. NPA also modified auxin embryo accumulation patterns. These findings indicate that endogenous auxin biosynthesis, action and polar transport are required in stress-induced microspore reprogramming, embryogenesis initiation and progression.


Asunto(s)
Brassica napus/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Polen/embriología , Transporte Biológico , Vías Biosintéticas/genética , Brassica napus/citología , Brassica napus/genética , Células Cultivadas , Cromatografía Liquida , Ácido Clofíbrico/farmacología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Calor , Espectrometría de Masas/métodos , Microscopía Confocal , Microscopía de Interferencia , Ftalimidas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Polen/efectos de los fármacos , Polen/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/citología , Semillas/genética , Semillas/metabolismo , Estrés Fisiológico
13.
Plant Cell Physiol ; 55(1): 16-29, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24151205

RESUMEN

The tapetum, the nursing tissue inside anthers, undergoes cellular degradation by programmed cell death (PCD) during late stages of microspore-early pollen development. Despite the key function of tapetum, little is known about the molecular mechanisms regulating this cell death process in which profound nuclear and chromatin changes occur. Epigenetic features (DNA methylation and histone modifications) have been revealed as hallmarks that establish the functional status of chromatin domains, but no evidence on the epigenetic regulation of PCD has been reported. DNA methylation is accomplished by DNA methyltransferases, among which DNA methyl transferase 1 (MET1) constitutes one of the CG maintenance methyltransferase in plants, also showing de novo methyltransferase activity. In this work, the changes in epigenetic marks during the PCD of tapetal cells have been investigated by a multidisciplinary approach to reveal the dynamics of DNA methylation and the pattern of expression of MET1 in relation to the main cellular changes of this PCD process which have also been characterized in two species, Brassica napus and Nicotiana tabacum. The results showed that tapetum PCD progresses with the increase in global DNA methylation and MET1 expression, epigenetic changes that accompanied the reorganization of the nuclear architecture and a high chromatin condensation, activity of caspase 3-like proteases and Cyt c release. The reported data indicate a relationship between the PCD process and the DNA methylation dynamics and MET1 expression in tapetal cells, suggesting a possible new role for the epigenetic marks in the nuclear events occurring during this cell death process and providing new insights into the epigenetic control of plant PCD.


Asunto(s)
Apoptosis/genética , Brassica napus/citología , Brassica napus/genética , Epigénesis Genética , Nicotiana/citología , Nicotiana/genética , Polen/citología , 5-Metilcitosina/metabolismo , Caspasa 3/metabolismo , Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas , Immunoblotting , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , Polen/ultraestructura , Fracciones Subcelulares/metabolismo , Nicotiana/ultraestructura
14.
BMC Plant Biol ; 14: 224, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25162300

RESUMEN

BACKGROUND: In Quercus suber, cork oak, a Mediterranean forest tree of economic and social interest, rapid production of isogenic lines and clonal propagation of elite genotypes have been achieved by developing in vitro embryogenesis from microspores and zygotic embryos respectively. Despite its high potential in tree breeding strategies, due to their recalcitrancy, the efficiency of embryogenesis in vitro systems in many woody species is still very low since factors responsible for embryogenesis initiation and embryo development are still largely unknown. The search for molecular and cellular markers during early stages of in vitro embryogenesis constitutes an important goal to distinguish, after induction, responsive from non-responsive cells, and to elucidate the mechanisms involved in embryogenesis initiation for their efficient manipulation. In this work, we have performed a comparative analysis of two embryogenesis pathways derived from microspores and immature zygotic embryos in cork oak in order to characterize early markers of reprogrammed cells in both pathways. Rearrangements of the cell structural organization, changes in epigenetic marks, cell wall polymers modifications and endogenous auxin changes were analyzed at early embryogenesis stages of the two in vitro systems by a multidisciplinary approach. RESULTS: Results showed that early embryo cells exhibited defined changes of cell components which were similar in both embryogenesis in vitro systems, cellular features that were not found in non-embryogenic cells. DNA methylation level and nuclear pattern, proportion of esterified pectins in cell walls, and endogenous auxin levels were different in embryo cells in comparison with microspores and immature zygotic embryo cells from which embryos originated, constituting early embryogenesis markers. CONCLUSIONS: These findings suggest that DNA hypomethylation, cell wall remodeling by pectin esterification and auxin increase are involved in early in vitro embryogenesis in woody species, providing new evidences of the developmental pattern similarity between both embryogenesis pathways, from microspores and immature zygotic embryos, in woody species.


Asunto(s)
Biomarcadores/metabolismo , Polen/metabolismo , Quercus/embriología , Semillas/crecimiento & desarrollo , Diferenciación Celular , Proliferación Celular , Metilación de ADN , Esterificación , Ácidos Indolacéticos/metabolismo , Pectinas/metabolismo , Quercus/metabolismo , Semillas/metabolismo
15.
Cytogenet Genome Res ; 143(1-3): 200-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25074410

RESUMEN

Under specific stress treatments, the microspore can be induced in vitro to deviate from its gametophytic development and to reprogram towards embryogenesis, becoming a totipotent cell and forming haploid embryos. These can further regenerate homozygous plants for production of new isogenic lines, an important biotechnological tool for crop breeding. DNA methylation constitutes a prominent epigenetic modification of the chromatin fiber which regulates gene expression. Changes in DNA methylation accompany the reorganization of the nuclear architecture during plant cell differentiation and proliferation; however, the relationship between global DNA methylation and genome-wide expression patterns is still poorly understood. In this work, the dynamics of global DNA methylation levels and distribution patterns were analyzed during microspore reprogramming to embryogenesis and during pollen development in Hordeum vulgare. Quantification of global DNA methylation levels and 5-methyl-deoxycytidine (5mdC) immunofluorescence were conducted at specific stages of pollen development and after reprogramming to embryogenesis to analyze the epigenetic changes that accompany the change of developmental program and cell fate. The results showed low DNA methylation levels in microspores and a high increase along pollen development and maturation; an intense 5mdC signal was concentrated in the generative and sperm nuclei whereas the vegetative nucleus exhibited a weaker DNA methylation signal. After inductive stress treatment, low methylation levels and faint 5mdC signals were observed in nuclei of reprogrammed microspores and 2-4-cell proembryos. This data revealed a global DNA hypomethylation during the change of the developmental program and first embryogenic divisions. This is in contrast with the hypermethylation of generative and sperm cells of the male germline during pollen maturation, suggesting an epigenetic regulation after induction of microspore embryogenesis. At later embryogenesis stages, global DNA methylation progressively increased, accompanying embryo development and differentiation events like in zygotic embryos, corroborating that DNA methylation is critical for the regulation of gene expression in microspore embryogenesis.


Asunto(s)
Núcleo Celular/genética , Metilación de ADN/genética , Hordeum/genética , Polen/genética , Semillas/genética , Epigénesis Genética/genética , Regulación de la Expresión Génica de las Plantas/genética
16.
Cytogenet Genome Res ; 143(1-3): 209-18, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25060767

RESUMEN

In response to stress treatments, microspores can be reprogrammed to become totipotent cells that follow an embryogenic pathway producing haploid and double-haploid embryos which are important biotechnological tools in plant breeding. Recent studies have revealed the involvement of DNA methylation in regulating this process, but no information is available on the role of histone modifications in microspore embryogenesis. Histone modifications are major epigenetic marks controlling gene expression during plant development and in response to environmental changes. Lysine methylation of histones, accomplished by histone lysine methyltransferases (HKMTs), can occur on different lysine residues, with histone H3K9 methylation being mainly associated with transcriptionally silenced regions. In contrast, histone H3 and H4 acetylation is carried out by histone acetyltransferases (HATs) and is associated with actively transcribed genes. In this work, we analyzed 3 different histone epigenetic marks: dimethylation of H3K9 (H3K9me2) and acetylation of H3 and H4 (H3Ac and H4Ac) during microspore embryogenesis in Brassica napus by Western blot and immunofluorescence assays. The expression patterns of histone methyltransferase BnHKMT and histone acetyltransferase BnHAT genes have also been analyzed by qPCR. Our results revealed different spatial and temporal distribution patterns for methylated and acetylated histone variants during microspore embryogenesis and their similarity with the expression profiles of BnHKMT and BnHAT, respectively. The data presented suggest the participation of H3K9me2 and HKMT in embryo cell differentiation and heterochromatinization events, whereas H3Ac, H4Ac, and HAT would be involved in transcriptional activation, totipotency, and proliferation events during cell reprogramming and embryo development.


Asunto(s)
Brassica napus/genética , Diferenciación Celular/genética , Histona Acetiltransferasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Polen/genética , Células Madre Totipotentes/metabolismo , Acetilación , Brassica napus/metabolismo , Proliferación Celular , Haploidia , Histona Acetiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Lisina/genética , Lisina/metabolismo , Metilación , Polen/metabolismo , Semillas/genética , Semillas/metabolismo
17.
J Exp Bot ; 65(18): 5459-71, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25053647

RESUMEN

Arabinogalactan proteins (AGPs) are heavily glycosylated proteins existing in all members of the plant kingdom and are differentially distributed through distinctive developmental stages. Here, we showed the individual distributions of specific Arabidopsis AGPs: AGP1, AGP9, AGP12, AGP15, and AGP23, throughout reproductive tissues and indicated their possible roles in several reproductive processes. AGP genes specifically expressed in female tissues were identified using available microarray data. This selection was confirmed by promoter analysis using multiple green fluorescent protein fusions to a nuclear localization signal, ß-glucuronidase fusions, and in situ hybridization as approaches to confirm the expression patterns of the AGPs. Promoter analysis allowed the detection of a specific and differential presence of these proteins along the pathway followed by the pollen tube during its journey to reach the egg and the central cell inside the embryo sac. AGP1 was expressed in the stigma, style, transmitting tract, and the chalazal and funiculus tissues of the ovules. AGP9 was present along the vasculature of the reproductive tissues and AGP12 was expressed in the stigmatic cells, chalazal and funiculus cells of the ovules, and in the septum. AGP15 was expressed in all pistil tissues, except in the transmitting tract, while AGP23 was specific to the pollen grain and pollen tube. The expression pattern of these AGPs provides new evidence for the detection of a subset of specific AGPs involved in plant reproductive processes, being of significance for this field of study. AGPs are prominent candidates for male-female communication during reproduction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Mucoproteínas/metabolismo , Tubo Polínico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mucoproteínas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Physiol Plant ; 149(1): 104-13, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23193951

RESUMEN

DNA methylation of cytosine residues constitutes a prominent epigenetic modification of the chromatin fiber which is locked in a transcriptionally inactive conformation leading to gene silencing. Plant developmental processes, as differentiation and proliferation, are accompanied by chromatin remodeling and epigenetic reprogramming. Despite the increasing knowledge gained on the epigenetic mechanisms controlling plant developmental processes, the knowledge of the DNA methylation regulation during relevant developmental programs in flowering plants, such as gametogenesis or embryogenesis, is very limited. The analysis of global DNA methylation levels has been frequently conducted by high performance capillary electrophoresis, and more recently also by ELISA-based assays, which provided quantitative data of whole organs and tissues. Nevertheless, to investigate the DNA methylation dynamics during plant development in different cell types of the same organ, the analysis of spatial and temporal pattern of nuclear distribution of 5-methyl-deoxy-cytidine (5mdC) constitutes a potent approach. In this work, immunolocalization of 5mdC on sections and subsequent confocal laser microscopy analysis have been applied for in situ cellular analysis of a variety of plant cells, tissues and organs with different characteristics, e.g. hardness, heterogeneity, cell accessibility, tissue compactness, etc.; the results demonstrated the versatility and feasibility of the approach for different plant samples, and revealed defined DNA methylation nuclear patterns associated with differentiation and proliferation events of various plant cell types and developmental programs. Quantification of 5mdC immunofluorescence intensity by image analysis software also permitted to estimate differences in global DNA methylation levels among different cells types of the same organ during development.


Asunto(s)
Cromatina/metabolismo , Metilación de ADN , Desoxicitidina/análogos & derivados , Nicotiana/genética , Cebollas/genética , Desoxicitidina/análisis , Desoxicitidina/metabolismo , Epigénesis Genética , Flores/citología , Flores/genética , Técnica del Anticuerpo Fluorescente/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Hibridación Fluorescente in Situ/métodos , Meristema/citología , Meristema/genética , Microscopía Confocal/métodos , Cebollas/crecimiento & desarrollo , Células Vegetales , Nicotiana/crecimiento & desarrollo
20.
Plants (Basel) ; 12(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37050168

RESUMEN

Somatic embryogenesis (SE) is a feasible in vitro regeneration system with biotechnological applications in breeding programs, although, in many forest species, SE is highly inefficient, mainly due to their recalcitrance. On the other hand, SE represents a valuable model system for studies on cell reprogramming, totipotency acquisition, and embryogenic development. The molecular mechanisms that govern the transition of plant somatic cells to embryogenic cells are largely unknown. There is increasing evidence that auxins mediate this transition and play a key role in somatic embryo development, although data on woody species are very limited. In this study, we analyzed the dynamics and possible role of endogenous auxin during SE in cork oak (Quercus suber L.). The auxin content was low in somatic cells before cell reprogramming, while it increased after induction of embryogenesis, as revealed by immunofluorescence assays. Cellular accumulation of endogenous auxin was also detected at the later stages of somatic embryo development. These changes in auxin levels correlated with the expression patterns of the auxin biosynthesis (QsTAR2) and signaling (QsARF5) genes, which were upregulated after SE induction. Treatments with the inhibitor of auxin biosynthesis, kynurenine, reduced the proliferation of proembryogenic masses and impaired further embryo development. QsTAR2 and QsARF5 were downregulated after kynurenine treatment. Our findings indicate a key role of endogenous auxin biosynthesis and signaling in SE induction and multiplication, as well as somatic embryo development of cork oak.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA