RESUMEN
K(+) channels fulfill roles spanning from the control of excitability to the regulation of transepithelial transport. Here we review two groups of K(+) channels, pH-regulated K2P channels and the transport group of Kir channels. After considering advances in the molecular aspects of their gating based on structural and functional studies, we examine their participation in certain chosen physiological and pathophysiological scenarios. Crystal structures of K2P and Kir channels reveal rather unique features with important consequences for the gating mechanisms. Important tasks of these channels are discussed in kidney physiology and disease, K(+) homeostasis in the brain by Kir channel-equipped glia, and central functions in the hearing mechanism in the inner ear and in acid secretion by parietal cells in the stomach. K2P channels fulfill a crucial part in central chemoreception probably by virtue of their pH sensitivity and are central to adrenal secretion of aldosterone. Finally, some unorthodox behaviors of the selectivity filters of K2P channels might explain their normal and pathological functions. Although a great deal has been learned about structure, molecular details of gating, and physiological functions of K2P and Kir K(+)-transport channels, this has been only scratching at the surface. More molecular and animal studies are clearly needed to deepen our knowledge.
Asunto(s)
Activación del Canal Iónico/fisiología , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Animales , Regulación de la Expresión Génica/fisiología , Humanos , Concentración de Iones de Hidrógeno , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Dominio Poro en Tándem/genéticaRESUMEN
Pathological missense mutations in CLCNKB gene give a wide spectrum of clinical phenotypes in Bartter syndrome type III patients. Molecular analysis of the mutated ClC-Kb channels can be helpful to classify the mutations according to their functional alteration. We investigated the functional consequences of nine mutations in the CLCNKB gene causing Bartter syndrome. We first established that all tested mutations lead to decreased ClC-Kb currents. Combining electrophysiological and biochemical methods in Xenopus laevis oocytes and in MDCKII cells, we identified three classes of mutations. One class is characterized by altered channel trafficking. p.A210V, p.P216L, p.G424R, and p.G437R are totally or partially retained in the endoplasmic reticulum. p.S218N is characterized by reduced channel insertion at the plasma membrane and altered pH-sensitivity; thus, it falls in the second class of mutations. Finally, we found a novel class of functionally inactivated mutants normally present at the plasma membrane. Indeed, we found that p.A204T alters the pH-sensitivity, p.A254V abolishes the calcium-sensitivity. p.G219C and p.G465R are probably partially inactive at the plasma membrane. In conclusion, most pathogenic mutants accumulate partly or totally in intracellular compartments, but some mutants are normally present at the membrane surface and simultaneously show a large range of altered channel gating properties.
Asunto(s)
Síndrome de Bartter/genética , Sitios de Unión , Calcio/metabolismo , Canales de Cloruro/química , Canales de Cloruro/genética , Mutación , Multimerización de Proteína , Animales , Síndrome de Bartter/metabolismo , Línea Celular , Humanos , Oocitos/metabolismo , Unión Proteica , Transporte de Proteínas , XenopusRESUMEN
The kidneys excrete the daily acid load mainly by generating and excreting ammonia but the underlying molecular mechanisms are not fully understood. Here we evaluated the role of the inwardly rectifying potassium channel subunit Kir4.2 (Kcnj15 gene product) in this process. In mice, Kir4.2 was present exclusively at the basolateral membrane of proximal tubular cells and disruption of Kcnj15 caused a hyperchloremic metabolic acidosis associated with a reduced threshold for bicarbonate in the absence of a generalized proximal tubule dysfunction. Urinary ammonium excretion rates in Kcnj15- deleted mice were inappropriate to acidosis under basal and acid-loading conditions, and not related to a failure to acidify urine or a reduced expression of ammonia transporters in the collecting duct. In contrast, the expression of key proteins involved in ammonia metabolism and secretion by proximal cells, namely the glutamine transporter SNAT3, the phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase enzymes, and the sodium-proton exchanger NHE-3 was inappropriate in Kcnj15-deleted mice. Additionally, Kcnj15 deletion depolarized the proximal cell membrane by decreasing the barium-sensitive component of the potassium conductance and caused an intracellular alkalinization. Thus, the Kir4.2 potassium channel subunit is a newly recognized regulator of proximal ammonia metabolism. The kidney consequences of its loss of function in mice support the proposal for KCNJ15 as a molecular basis for human isolated proximal renal tubular acidosis.
Asunto(s)
Equilibrio Ácido-Base , Amoníaco , Bicarbonatos , Canales de Potasio de Rectificación Interna , Animales , Ratones , Potasio , Canales de Potasio de Rectificación Interna/genéticaRESUMEN
With-no-lysine kinase 4 (WNK4) and kidney-specific (KS)-WNK1 regulate ROMK (Kir1.1) channels in a variety of cell models. We now explore the role of WNK4 and KS-WNK1 in regulating ROMK in the native distal convoluted tubule (DCT)/connecting tubule (CNT) by measuring tertiapin-Q (TPNQ; ROMK inhibitor)-sensitive K+ currents with whole cell recording. TPNQ-sensitive K+ currents in DCT2/CNT of KS- WNK1-/- and WNK4-/- mice were significantly smaller than that of WT mice. In contrast, the basolateral K+ channels (a Kir4.1/5.1 heterotetramer) in the DCT were not inhibited. Moreover, WNK4-/- mice were hypokalemic, while KS- WNK1-/- mice had normal plasma K+ levels. High K+ (HK) intake significantly increased TPNQ-sensitive K+ currents in DCT2/CNT of WT and WNK4-/- mice but not in KS- WNK1-/- mice. However, TPNQ-sensitive K+ currents in the cortical collecting duct (CCD) were normal not only under control conditions but also significantly increased in response to HK in KS- WNK1-/- mice. This suggests that the deletion of KS-WNK1-induced inhibition of ROMK occurs only in the DCT2/CNT. Renal clearance study further demonstrated that the deletion of KS-WNK1 did not affect the renal ability of K+ excretion under control conditions and during increasing K+ intake. Also, HK intake did not cause hyperkalemia in KS- WNK1-/- mice. We conclude that KS-WNK1 but not WNK4 is required for HK intake-induced stimulation of ROMK activity in DCT2/CNT. However, KS-WNK1 is not essential for HK-induced stimulation of ROMK in the CCD, and the lack of KS-WNK1 does not affect net renal K+ excretion.
Asunto(s)
Túbulos Renales Distales/enzimología , Canales de Potasio de Rectificación Interna/metabolismo , Potasio en la Dieta/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Animales , Femenino , Genotipo , Hiperpotasemia/enzimología , Hiperpotasemia/genética , Hipopotasemia/enzimología , Hipopotasemia/genética , Técnicas In Vitro , Masculino , Potenciales de la Membrana , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Canales de Potasio de Rectificación Interna/genética , Potasio en la Dieta/orina , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Eliminación Renal , Proteína Quinasa Deficiente en Lisina WNK 1/deficiencia , Proteína Quinasa Deficiente en Lisina WNK 1/genéticaRESUMEN
Chloride transport by the renal tubule is critical for blood pressure (BP), acid-base, and potassium homeostasis. Chloride uptake from the urinary fluid is mediated by various apical transporters, whereas basolateral chloride exit is thought to be mediated by ClC-Ka/K1 and ClC-Kb/K2, two chloride channels from the ClC family, or by KCl cotransporters from the SLC12 gene family. Nevertheless, the localization and role of ClC-K channels is not fully resolved. Because inactivating mutations in ClC-Kb/K2 cause Bartter syndrome, a disease that mimics the effects of the loop diuretic furosemide, ClC-Kb/K2 is assumed to have a critical role in salt handling by the thick ascending limb. To dissect the role of this channel in detail, we generated a mouse model with a targeted disruption of the murine ortholog ClC-K2. Mutant mice developed a Bartter syndrome phenotype, characterized by renal salt loss, marked hypokalemia, and metabolic alkalosis. Patch-clamp analysis of tubules isolated from knockout (KO) mice suggested that ClC-K2 is the main basolateral chloride channel in the thick ascending limb and in the aldosterone-sensitive distal nephron. Accordingly, ClC-K2 KO mice did not exhibit the natriuretic response to furosemide and exhibited a severely blunted response to thiazide. We conclude that ClC-Kb/K2 is critical for salt absorption not only by the thick ascending limb, but also by the distal convoluted tubule.
Asunto(s)
Proteínas de Transporte de Anión/fisiología , Canales de Cloruro/fisiología , Nefronas/metabolismo , Cloruro de Sodio/metabolismo , Animales , Diuréticos/farmacología , Furosemida/farmacología , Ratones , Ratones Noqueados , Nefronas/efectos de los fármacos , Inhibidores de los Simportadores del Cloruro de Sodio/farmacologíaRESUMEN
Bartter syndrome type 3 is a clinically heterogeneous hereditary salt-losing tubulopathy caused by mutations of the chloride voltage-gated channel Kb gene (CLCNKB), which encodes the ClC-Kb chloride channel involved in NaCl reabsorption in the renal tubule. To study phenotype/genotype correlations, we performed genetic analyses by direct sequencing and multiplex ligation-dependent probe amplification and retrospectively analyzed medical charts for 115 patients with CLCNKB mutations. Functional analyses were performed in Xenopus laevis oocytes for eight missense and two nonsense mutations. We detected 60 mutations, including 27 previously unreported mutations. Among patients, 29.5% had a phenotype of ante/neonatal Bartter syndrome (polyhydramnios or diagnosis in the first month of life), 44.5% had classic Bartter syndrome (diagnosis during childhood, hypercalciuria, and/or polyuria), and 26.0% had Gitelman-like syndrome (fortuitous discovery of hypokalemia with hypomagnesemia and/or hypocalciuria in childhood or adulthood). Nine of the ten mutations expressed in vitro decreased or abolished chloride conductance. Severe (large deletions, frameshift, nonsense, and essential splicing) and missense mutations resulting in poor residual conductance were associated with younger age at diagnosis. Electrolyte supplements and indomethacin were used frequently to induce catch-up growth, with few adverse effects. After a median follow-up of 8 (range, 1-41) years in 77 patients, chronic renal failure was detected in 19 patients (25%): one required hemodialysis and four underwent renal transplant. In summary, we report a genotype/phenotype correlation for Bartter syndrome type 3: complete loss-of-function mutations associated with younger age at diagnosis, and CKD was observed in all phenotypes.
Asunto(s)
Síndrome de Bartter/diagnóstico , Síndrome de Bartter/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Masculino , Mutación , Estudios Retrospectivos , Adulto JovenRESUMEN
BACKGROUND: Pendrin, the chloride/bicarbonate exchanger of ß-intercalated cells of the renal connecting tubule and the collecting duct, plays a key role in NaCl reabsorption by the distal nephron. Therefore, pendrin may be important for the control of extracellular fluid volume and blood pressure. METHODS: Here, we have used a genetic mouse model in which the expression of pendrin can be switched-on in vivo by the administration of doxycycline. Pendrin can also be rapidly removed when doxycycline administration is discontinued. Therefore, our genetic strategy allows us to test selectively the acute effects of loss of pendrin function. RESULTS: We show that acute loss of pendrin leads to a significant decrease of blood pressure. In addition, acute ablation of pendrin did not alter significantly the acid-base status or blood K + concentration. CONCLUSION: By using a transgenic mouse model, avoiding off-target effects related to pharmacological compounds, this study suggests that pendrin could be a novel target to treat hypertension.
Asunto(s)
Proteínas de Transporte de Anión/fisiología , Presión Sanguínea/fisiología , Hipertensión/etiología , Animales , Hipertensión/metabolismo , Hipertensión/patología , Masculino , Ratones , Ratones Transgénicos , Transportadores de SulfatoRESUMEN
Parasitic sea lice represent a major sanitary threat to marine salmonid aquaculture, an industry accounting for 7% of world fish production. Caligus rogercresseyi is the principal sea louse species infesting farmed salmon and trout in the southern hemisphere. Most effective control of Caligus has been obtained with macrocyclic lactones (MLs) ivermectin and emamectin. These drugs target glutamate-gated chloride channels (GluCl) and act as irreversible non-competitive agonists causing neuronal inhibition, paralysis and death of the parasite. Here we report the cloning of a full-length CrGluClα receptor from Caligus rogercresseyi. Expression in Xenopus oocytes and electrophysiological assays show that CrGluClα is activated by glutamate and mediates chloride currents blocked by the ligand-gated anion channel inhibitor picrotoxin. Both ivermectin and emamectin activate CrGluClα in the absence of glutamate. The effects are irreversible and occur with an EC(50) value of around 200 nM, being cooperative (n(H)â=â2) for ivermectin but not for emamectin. Using the three-dimensional structure of a GluClα from Caenorabditis elegans, the only available for any eukaryotic ligand-gated anion channel, we have constructed a homology model for CrGluClα. Docking and molecular dynamics calculations reveal the way in which ivermectin and emamectin interact with CrGluClα. Both drugs intercalate between transmembrane domains M1 and M3 of neighbouring subunits of a pentameric structure. The structure displays three H-bonds involved in this interaction, but despite similarity in structure only of two these are conserved from the C. elegans crystal binding site. Our data strongly suggest that CrGluClα is an important target for avermectins used in the treatment of sea louse infestation in farmed salmonids and open the way for ascertaining a possible mechanism of increasing resistance to MLs in aquaculture industry. Molecular modeling could help in the design of new, more efficient drugs whilst functional expression of the receptor allows a first stage of testing of their efficacy.
Asunto(s)
Canales de Cloruro/metabolismo , Copépodos/fisiología , Enfermedades de los Peces/metabolismo , Peces/parasitología , Ácido Glutámico/farmacología , Ivermectina/análogos & derivados , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Canales de Cloruro/química , Canales de Cloruro/genética , Clonación Molecular , Copépodos/efectos de los fármacos , Electrofisiología , Femenino , Enfermedades de los Peces/genética , Enfermedades de los Peces/parasitología , Peces/crecimiento & desarrollo , Peces/metabolismo , Insecticidas/farmacología , Ivermectina/farmacología , Modelos Moleculares , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Oocitos/citología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Homología de Secuencia de Aminoácido , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/metabolismoRESUMEN
The mutations in the CLCNKB gene encoding the ClC-Kb chloride channel are responsible for Bartter syndrome type 3, one of the four variants of Bartter syndrome in the genetically based nomenclature. All forms of Bartter syndrome are characterized by hypokalemia, metabolic alkalosis, and secondary hyperaldosteronism, but Bartter syndrome type 3 has the most heterogeneous presentation, extending from severe to very mild. A relatively large number of CLCNKB mutations have been reported, including gene deletions and nonsense or missense mutations. However, only 20 CLCNKB mutations have been functionally analyzed, due to technical difficulties regarding ClC-Kb functional expression in heterologous systems. This review provides an overview of recent progress in the functional consequences of CLCNKB mutations on ClC-Kb chloride channel activity. It has been observed that 1) all ClC-Kb mutants have an impaired expression at the membrane; and 2) a minority of the mutants combines reduced membrane expression with altered pH-dependent channel gating. Although further investigation is needed to fully characterize disease pathogenesis, Bartter syndrome type 3 probably belongs to the large family of conformational diseases, in which the mutations destabilize channel structure, inducing ClC-Kb retention in the endoplasmic reticulum and accelerated channel degradation.
Asunto(s)
Síndrome de Bartter/genética , Canales de Cloruro/metabolismo , Predisposición Genética a la Enfermedad , Mutación/genética , Animales , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Canales de Cloruro/genética , Análisis Mutacional de ADN/métodos , HumanosRESUMEN
Mechanical forces associated with fluid flow and/or circumferential stretch are sensed by renal epithelial cells and contribute to both adaptive or disease states. Non-selective stretch-activated ion channels (SACs), characterized by a lack of inactivation and a remarkably slow deactivation, are active at the basolateral side of renal proximal convoluted tubules. Knockdown of Piezo1 strongly reduces SAC activity in proximal convoluted tubule epithelial cells. Similarly, overexpression of Polycystin-2 (PC2) or, to a greater extent its pathogenic mutant PC2-740X, impairs native SACs. Moreover, PC2 inhibits exogenous Piezo1 SAC activity. PC2 coimmunoprecipitates with Piezo1 and deletion of its N-terminal domain prevents both this interaction and inhibition of SAC activity. These findings indicate that renal SACs depend on Piezo1, but are critically conditioned by PC2.
Asunto(s)
Células Epiteliales/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular , Canales Catiónicos TRPP/metabolismo , Potenciales de Acción , Animales , Sitios de Unión , Células COS , Células Cultivadas , Chlorocebus aethiops , Células Epiteliales/fisiología , Túbulos Renales/citología , Mutación , Unión Proteica , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/genéticaRESUMEN
The structure-function relationships of sugar transporter-receptor hGLUT2 coded by SLC2A2 and their impact on insulin secretion and ß cell differentiation were investigated through the detailed characterization of a panel of mutations along the protein. We studied naturally occurring SLC2A2 variants or mutants: two single-nucleotide polymorphisms and four proposed inactivating mutations associated to Fanconi-Bickel syndrome. We also engineered mutations based on sequence alignment and conserved amino acids in selected domains. The single-nucleotide polymorphisms P68L and T110I did not impact on sugar transport as assayed in Xenopus oocytes. All the Fanconi-Bickel syndrome-associated mutations invalidated glucose transport by hGLUT2 either through absence of protein at the plasma membrane (G20D and S242R) or through loss of transport capacity despite membrane targeting (P417L and W444R), pointing out crucial amino acids for hGLUT2 transport function. In contrast, engineered mutants were located at the plasma membrane and able to transport sugar, albeit with modified kinetic parameters. Notably, these mutations resulted in gain of function. G20S and L368P mutations increased insulin secretion in the absence of glucose. In addition, these mutants increased insulin-positive cell differentiation when expressed in cultured rat embryonic pancreas. F295Y mutation induced ß cell differentiation even in the absence of glucose, suggesting that mutated GLUT2, as a sugar receptor, triggers a signaling pathway independently of glucose transport and metabolism. Our results describe the first gain of function mutations for hGLUT2, revealing the importance of its receptor versus transporter function in pancreatic ß cell development and insulin secretion.
Asunto(s)
Diferenciación Celular/fisiología , Transportador de Glucosa de Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Mutación Missense , Polimorfismo de Nucleótido Simple , Sustitución de Aminoácidos , Animales , Transporte Biológico Activo/genética , Línea Celular Tumoral , Glucosa/genética , Glucosa/metabolismo , Transportador de Glucosa de Tipo 2/genética , Humanos , Insulina/genética , Secreción de Insulina , Células Secretoras de Insulina/citología , Ratones , Ratas , Transducción de Señal , Xenopus laevisRESUMEN
Several Cl(-) channels have been described in the native renal tubule, but their correspondence with ClC-K1 and ClC-K2 channels (orthologs of human ClC-Ka and ClC-Kb), which play a major role in transcellular Cl(-) absorption in the kidney, has yet to be established. This is partly because investigation of heterologous expression has involved rat or human ClC-K models, whereas characterization of the native renal tubule has been done in mice. Here, we investigate the electrophysiological properties of mouse ClC-K1 channels heterologously expressed in Xenopus laevis oocytes and in HEK293 cells with or without their accessory Barttin subunit. Current amplitudes and plasma membrane insertion of mouse ClC-K1 were enhanced by Barttin. External basic pH or elevated calcium stimulated currents followed the anion permeability sequence Cl(-)>Br(-)>NO3(-)>I(-). Single-channel recordings revealed a unit conductance of ~40pS. Channel activity in cell-attached patches increased with membrane depolarization (voltage for half-maximal activation: ~-65mV). Insertion of the V166E mutation, which introduces a glutamate in mouse ClC-K1, which is crucial for channel gating, reduced the unit conductance to ~20pS. This mutation shifted the depolarizing voltage for half-maximal channel activation to ~+25mV. The unit conductance and voltage dependence of wild-type and V166E ClC-K1 were not affected by Barttin. Owing to their strikingly similar properties, we propose that the ClC-K1/Barttin complex is the molecular substrate of a chloride channel previously detected in the mouse thick ascending limb (Paulais et al., J Membr. Biol, 1990, 113:253-260).
Asunto(s)
Canales de Cloruro/metabolismo , Animales , Células HEK293 , Humanos , Túbulos Renales/metabolismo , Técnicas de Placa-Clamp , Proteínas Recombinantes/metabolismo , Xenopus laevisRESUMEN
ClC-Kb, a member of the ClC family of Cl(-) channels/transporters, plays a major role in the absorption of NaCl in the distal nephron. CLCNKB mutations cause Bartter syndrome type 3, a hereditary renal salt-wasting tubulopathy. Here, we investigate the functional consequences of a Val to Met substitution at position 170 (V170M, α helix F), which was detected in eight patients displaying a mild phenotype. Conductance and surface expression were reduced by ~40-50 %. The regulation of channel activity by external H(+) and Ca(2+) is a characteristic property of ClC-Kb. Inhibition by external H(+) was dramatically altered, with pKH shifting from 7.6 to 6.0. Stimulation by external Ca(2+) on the other hand was no longer detectable at pH 7.4, but was still present at acidic pH values. Functionally, these regulatory modifications partly counterbalance the reduced surface expression by rendering V170M hyperactive. Pathogenic Met170 seems to interact with another methionine on α helix H (Met227) since diverse mutations at this site partly removed pH sensitivity alterations of V170M ClC-Kb. Exploring other disease-associated mutations, we found that a Pro to Leu substitution at position 124 (α helix D, Simon et al., Nat Genet 1997, 17:171-178) had functional consequences similar to those of V170M. In conclusion, we report here for the first time that ClC-Kb disease-causing mutations located around the selectivity filter can result in both reduced surface expression and hyperactivity in heterologous expression systems. This interplay must be considered when analyzing the mild phenotype of patients with type 3 Bartter syndrome.
Asunto(s)
Síndrome de Bartter/genética , Síndrome de Bartter/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Mutación Puntual , Adulto , Calcio/metabolismo , Femenino , Humanos , Concentración de Iones de Hidrógeno , Persona de Mediana Edad , Técnicas de Placa-Clamp , Fenotipo , Adulto JovenRESUMEN
The heteromeric inwardly rectifying Kir4.1/Kir5.1 K(+) channel underlies the basolateral K(+) conductance in the distal nephron and is extremely sensitive to inhibition by intracellular pH. The functional importance of Kir4.1/Kir5.1 in renal ion transport has recently been highlighted by mutations in the human Kir4.1 gene (KCNJ10) that result in seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME)/epilepsy, ataxia, sensorineural deafness, and renal tubulopathy (EAST) syndrome, a complex disorder that includes salt wasting and hypokalemic alkalosis. Here, we investigated the role of the Kir5.1 subunit in mice with a targeted disruption of the Kir5.1 gene (Kcnj16). The Kir5.1(-/-) mice displayed hypokalemic, hyperchloremic metabolic acidosis with hypercalciuria. The short-term responses to hydrochlorothiazide, an inhibitor of ion transport in the distal convoluted tubule (DCT), were also exaggerated, indicating excessive renal Na(+) absorption in this segment. Furthermore, chronic treatment with hydrochlorothiazide normalized urinary excretion of Na(+) and Ca(2+), and abolished acidosis in Kir5.1(-/-) mice. Finally, in contrast to WT mice, electrophysiological recording of K(+) channels in the DCT basolateral membrane of Kir5.1(-/-) mice revealed that, even though Kir5.1 is absent, there is an increased K(+) conductance caused by the decreased pH sensitivity of the remaining homomeric Kir4.1 channels. In conclusion, disruption of Kcnj16 induces a severe renal phenotype that, apart from hypokalemia, is the opposite of the phenotype seen in SeSAME/EAST syndrome. These results highlight the important role that Kir5.1 plays as a pH-sensitive regulator of salt transport in the DCT, and the implication of these results for the correct genetic diagnosis of renal tubulopathies is discussed.
Asunto(s)
Túbulos Renales/fisiología , Túbulos Renales/fisiopatología , Fenotipo , Canales de Potasio de Rectificación Interna/metabolismo , Acidosis/genética , Acidosis/fisiopatología , Amilorida/farmacología , Animales , Diuréticos/farmacología , Furosemida/farmacología , Humanos , Hidroclorotiazida/farmacología , Hipopotasemia/genética , Hipopotasemia/fisiopatología , Túbulos Renales/citología , Túbulos Renales/efectos de los fármacos , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/genética , Bloqueadores de los Canales de Sodio/farmacología , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Síndrome , Canal Kir5.1RESUMEN
Mutations in the CLCNKB gene encoding the ClC-Kb Cl(-) channel cause Bartter syndrome, which is a salt-losing renal tubulopathy. Here, we investigate the functional consequences of seven mutations. When expressed in Xenopus laevis oocytes, four mutants carried no current (c.736G>C, p.Gly246Arg; c.1271G>A, p.Gly424Glu; c.1313G>A, p.Arg438His; c.1316T>C, p.Leu439Pro), whereas others displayed a 30%-60% reduction in conductance as compared with wild-type ClC-Kb (c.242T>C, p.Leu81Pro; c.274C>T, p.Arg92Trp; c.1052G>C, p.Arg351Pro). Anion selectivity and sensitivity to external Ca(2+) and H(+), typical of the ClC-Kb channel, were not modified in the partially active mutants. In oocytes, we found that all the mutations reduced surface expression with a profile similar to that observed for currents. In HEK293 cells, the currents in the mutants had similar profiles to those obtained in oocytes, except for p.Leu81Pro, which produced no current. Furthermore, p.Arg92Trp and p.Arg351Pro mutations did not modify the unit-conductance of closely related ClC-K1. Western blot analysis in HEK293 cells showed that ClC-Kb protein abundance was lower for the nonconducting mutants but similar to wild-type for other mutants. Overall, two classes of mutants can be distinguished: nonconducting mutants associated with low total protein expression, and partially conducting mutants with unaltered channel properties and ClC-Kb protein abundance.
Asunto(s)
Proteínas de Transporte de Anión/fisiología , Síndrome de Bartter/genética , Síndrome de Bartter/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Adolescente , Adulto , Animales , Proteínas de Transporte de Anión/metabolismo , Femenino , Células HEK293 , Humanos , Lactante , Masculino , Oocitos/metabolismo , Mutación Puntual , Xenopus laevis/genética , Xenopus laevis/metabolismo , Adulto JovenRESUMEN
Non-selective cation channels have been described in the basolateral membrane of the renal tubule, but little is known about functional channels on the apical side. Apical membranes of microdissected fragments of mouse cortical thick ascending limbs were searched for ion channels using the cell-free configuration of the patch-clamp technique. A cation channel with a linear current-voltage relationship (19pS) that was permeable both to monovalent cations [P(NH4)(1.7)>P(Na) (1.0)=P(K) (1.0)] and to Ca(2+) (P(Ca)/P(Na)≈0.3) was detected. Unlike the basolateral TRPM4 Ca(2+)-impermeable non-selective cation channel, this non-selective cation channel was insensitive to internal Ca(2+), pH and ATP. The channel was already active after patch excision, and its activity increased after reduced pressure was applied via the pipette. External gadolinium (10(-5)M) decreased the channel-open probability by 70% in outside-out patches, whereas external amiloride (10(-4)M) had no effect. Internal flufenamic acid (10(-4)M) inhibited the channel in inside-out patches. Its properties suggest that the current might be supported by the TRPM7 protein that is expressed in the loop of Henle. The conduction properties of the channel suggest that it could be involved in Ca(2+) signaling.
Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Activación del Canal Iónico/fisiología , Asa de la Nefrona/metabolismo , Canales Catiónicos TRPM/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antiinflamatorios/farmacología , Señalización del Calcio/efectos de los fármacos , Ácido Flufenámico/farmacología , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/efectos de los fármacos , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Masculino , RatonesRESUMEN
Dent's disease is an X-linked recessive disorder affecting the proximal tubules. Mutations in the 2Cl(-)/H(+) exchanger ClC-5 gene CLCN5 are frequently associated with Dent's disease. Functional characterization of mutations of CLCN5 have helped to elucidate the physiopathology of Dent's disease and provided evidence that several different mechanisms underlie the ClC-5 dysfunction in Dent's disease. Modeling studies indicate that many CLCN5 mutations are located at the interface between the monomers of ClC-5, demonstrating that this protein region plays an important role in Dent's disease. On the basis of functional data, CLCN5 mutations can be divided into three different classes. Class 1 mutations impair processing and folding, and as a result, the ClC-5 mutants are retained within the endoplasmic reticulum and targeted for degradation by quality control mechanisms. Class 2 mutations induce a delay in protein processing and reduce the stability of ClC-5. As a consequence, the cell surface expression and currents of the ClC-5 mutants are lower. Class 3 mutations do not alter the trafficking of ClC-5 to the cell surface and early endosomes but induce altered electrical activity. Here, we discuss the functional consequences of the three classes of CLCN5 mutations on ClC-5 structure and function.
Asunto(s)
Canales de Cloruro/genética , Enfermedad de Dent/genética , Mutación/genética , Canales de Cloruro/química , Enfermedad de Dent/fisiopatología , Retículo Endoplásmico/fisiología , Humanos , Procesamiento Proteico-Postraduccional/fisiología , Transporte de Proteínas/fisiologíaRESUMEN
Mutations in the electrogenic Cl(-)/H(+) exchanger ClC-5 gene CLCN5 are frequently associated with Dent disease, an X-linked recessive disorder affecting the proximal tubules. Here, we investigate the consequences in Xenopus laevis oocytes and in HEK293 cells of nine previously reported, pathogenic, missense mutations of ClC-5, most of them which are located in regions forming the subunit interface. Two mutants trafficked normally to the cell surface and to early endosomes, and displayed complex glycosylation at the cell surface like wild-type ClC-5, but exhibited reduced currents. Three mutants displayed improper N-glycosylation, and were nonfunctional due to being retained and degraded at the endoplasmic reticulum. Functional characterization of four mutants allowed us to identify a novel mechanism leading to ClC-5 dysfunction in Dent disease. We report that these mutant proteins were delayed in their processing, and that the stability of their complex glycosylated form was reduced, causing lower cell surface expression. The early endosome distribution of these mutants was normal. Half of these mutants displayed reduced currents, whereas the other half showed abolished currents. Our study revealed distinct cellular mechanisms accounting for ClC-5 loss of function in Dent disease.
Asunto(s)
Canales de Cloruro/genética , Enfermedad de Dent/genética , Mutación , Secuencia de Aminoácidos , Animales , Células Cultivadas , Canales de Cloruro/metabolismo , Enfermedad de Dent/metabolismo , Células HEK293 , Humanos , Túbulos Renales Proximales/metabolismo , Datos de Secuencia Molecular , Oocitos/metabolismo , Alineación de Secuencia , Xenopus laevisRESUMEN
Xu et al. identify Slc26a11, a novel member of the Slc26 anion exchanger family, as an electrogenic (Cl(-))(n)/HCO(3)(-) exchanger. Functional characterization of this transporter suggests that Slc26a11 mediates classical electroneutral Cl(-)/HCO(3)(-) exchange but also exhibits an electrogenic Cl(-) conductance. In the kidney, Slc26a11 colocalizes with the vacuolar H(+)-ATPase in intercalated cells, emphasizing the cooperation of the proton pump with chloride transporters.
Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Cloruros/metabolismo , Túbulos Renales Colectores/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Transportadores de SulfatoRESUMEN
Dent's disease is an X-linked recessive disorder affecting the proximal tubules and is frequently associated with mutations in CLCN5, which encodes the electrogenic chloride-proton exchanger ClC-5. To better understand the functional consequences of CLCN5 mutations in this disease, we screened four newly identified missense mutations (G179D, S203L, G212A, L469P), one new nonsense mutation (R718X), and three known mutations (L200R, C219R, and C221R), in Xenopus laevis oocytes and HEK293 cells expressing either wild-type or mutant exchanger. A type-I mutant (G212A) trafficked normally to the cell surface and to early endosomes, underwent complex glycosylation at the cell surface like wild-type ClC-5, but exhibited significant reductions in outwardly rectifying ion currents. The type-II mutants (G179D, L200R, S203L, C219R, C221R, L469P, and R718X) were improperly N-glycosylated and were non-functional due to retention in the endoplasmic reticulum. Thus these mutations have distinct mechanisms by which they could impair ClC-5 function in Dent's disease.