Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 292(42): 17418-17430, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28860192

RESUMEN

Secreted mixtures of Hypocrea jecorina cellulases are able to efficiently degrade cellulosic biomass to fermentable sugars at large, commercially relevant scales. H. jecorina Cel7A, cellobiohydrolase I, from glycoside hydrolase family 7, is the workhorse enzyme of the process. However, the thermal stability of Cel7A limits its use to processes where temperatures are no higher than 50 °C. Enhanced thermal stability is desirable to enable the use of higher processing temperatures and to improve the economic feasibility of industrial biomass conversion. Here, we enhanced the thermal stability of Cel7A through directed evolution. Sites with increased thermal stability properties were combined, and a Cel7A variant (FCA398) was obtained, which exhibited a 10.4 °C increase in Tm and a 44-fold greater half-life compared with the wild-type enzyme. This Cel7A variant contains 18 mutated sites and is active under application conditions up to at least 75 °C. The X-ray crystal structure of the catalytic domain was determined at 2.1 Å resolution and showed that the effects of the mutations are local and do not introduce major backbone conformational changes. Molecular dynamics simulations revealed that the catalytic domain of wild-type Cel7A and the FCA398 variant exhibit similar behavior at 300 K, whereas at elevated temperature (475 and 525 K), the FCA398 variant fluctuates less and maintains more native contacts over time. Combining the structural and dynamic investigations, rationales were developed for the stabilizing effect at many of the mutated sites.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa , Proteínas Fúngicas , Calor , Hypocrea , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/genética , Cristalografía por Rayos X , Evolución Molecular Dirigida , Estabilidad de Enzimas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Hypocrea/enzimología , Hypocrea/genética , Simulación de Dinámica Molecular , Dominios Proteicos
2.
J Biol Chem ; 278(34): 31988-97, 2003 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-12788920

RESUMEN

The filamentous fungus Trichoderma reesei produces and secretes profuse quantities of enzymes that act synergistically to degrade cellulase and related biomass components. We partially sequenced over 5100 random T. reesei cDNA clones. Among the sequences whose predicted gene products had significant similarity to known proteins, 12 were identified that encode previously unknown enzymes that likely function in biomass degradation. Microarrays were used to query the expression levels of each of the sequences under different conditions known to induce cellulolytic enzyme synthesis. Most of the genes encoding known and putative biomass-degrading enzymes were transcriptionally co-regulated. Moreover, despite the fact that several of these enzymes are not thought to degrade cellulase directly, they were coordinately overexpressed in a cellulase overproducing strain. A variety of additional sequences whose function could not be ascribed using the limited sequence available displayed analogous behavior and may also play a role in biomass degradation or in the synthesis of biomass-degrading enzymes. Sequences exhibiting additional regulatory patterns were observed that might reflect roles in regulation of cellulase biosynthesis. However, genes whose products are involved in protein processing and secretion were not highly regulated during cellulase induction.


Asunto(s)
Biomasa , Enzimas/genética , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Transcripción Genética , Trichoderma/enzimología , ADN Complementario , Enzimas/metabolismo , Etiquetas de Secuencia Expresada , Hidrólisis , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA