RESUMEN
Shoot apical meristems (SAMs) continuously initiate organ formation and maintain pluripotency through dynamic genetic regulations and cell-to-cell communications. The activity of meristems directly affects the plant's structure by determining the number and arrangement of organs and tissues. We have taken a forward genetic approach to dissect the genetic pathway that controls cell differentiation around the SAM. The rice mutants, adaxial-abaxial bipolar leaf 1 and 2 (abl1 and abl2), produce an ectopic leaf that is fused back-to-back with the fourth leaf, the first leaf produced after embryogenesis. The abaxial-abaxial fusion is associated with the formation of an ectopic shoot meristem at the adaxial base of the fourth leaf primordium. We cloned the ABL1 and ABL2 genes of rice by mapping their chromosomal positions. ABL1 encodes OsHK6, a histidine kinase, and ABL2 encodes a transcription factor, OSHB3 (Class III homeodomain leucine zipper). Expression analyses of these mutant genes as well as OSH1, a rice ortholog of the Arabidopsis STM gene, unveiled a regulatory circuit that controls the formation of an ectopic meristem near the SAM at germination.
Asunto(s)
Citocininas , Regulación de la Expresión Génica de las Plantas , Meristema , Oryza , Hojas de la Planta , Proteínas de Plantas , Meristema/genética , Meristema/metabolismo , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Citocininas/metabolismo , Citocininas/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Mutación/genética , Genes de Plantas , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genéticaRESUMEN
The precise control of cell growth and proliferation underpins the development of plants and animals. These factors affect the development and size of organs and the body. In plants, the growth and proliferation of cells are regulated by environmental stimuli and intrinsic signaling, allowing different cell types to have specific growth and proliferation characteristics. An increasing number of factors that control cell division and growth have been identified. However, the mechanisms underlying cell type-specific cell growth and proliferation characteristics in the normal developmental context are poorly understood. Here, we analyzed the rice mutant osmo25a1, which is defective in the progression of embryogenesis. The osmo25a1 mutant embryo developed incomplete embryonic organs, such as the shoot and root apical meristems. It showed a delayed progression of embryogenesis, associated with the reduced mitotic activity. The causal gene of this mutation encodes a member of the Mouse protein-25A (MO25A) family of proteins that have pivotal functions in a signaling pathway that governs cell proliferation and polarity in animals, yeasts and filamentous fungi. To elucidate the function of plant MO25A at the cellular level, we performed a functional analysis of MO25A in the moss Physcomitrium patens. Physcomitrium patens MO25A was uniformly distributed in the cytoplasm and functioned in cell tip growth and the initiation of cell division in stem cells. Overall, we demonstrated that MO25A proteins are conserved factors that control cell proliferation and growth.
Asunto(s)
Bryopsida , Proteínas de Plantas , Animales , Ratones , Proteínas de Plantas/metabolismo , Células Vegetales/metabolismo , Plantas/metabolismo , Proliferación Celular , Morfogénesis , Bryopsida/metabolismo , Mamíferos/metabolismoRESUMEN
Cell division is important for organisms to grow and repair damaged tissues. A mutant screen in rice has identified dwarf korpokkur (kor) mutants that code for a novel protein potentially involved in mitosis including cytokinesis in rice. The KOR gene is expressed during the mitotic phase and a defect in the KOR gene induces cells with two nuclei. Analysis of kor mutants suggests that the KOR gene promotes cell division in the rice leaf primordia for a period after initiation, and maintains proper cell morphology especially in non-meristematic tissues. Additionally, kor mutants showed a delayed transition from juvenile phase to adult phase. Future research will shed light on the relationship between the mitotic defect and other features observed in the kor mutants.