Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Proteome Res ; 9(4): 1763-71, 2010 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-20112977

RESUMEN

Cotranslational translocation of polypeptides into the ER is controlled by the dynamic interaction of ribosome and translocon components. Analysis of the steps involved in this process by high resolution techniques such as gel electrophoresis is precluded by the high molecular masses of these complexes. We show, here, that modifications to standard native electrophoresis protocols can overcome these problems and lead to an increase in mass range and resolution. Using the modified technique, we show that ER ribosome anchored membrane protein (RAMP) complexes resolve into 3 stable and semistable complexes which range in size between 4 and 8 MDa and are sensitive to relevant concentrations of divalent metals. We demonstrate the molecular composition of the complexes and identify a number of modular components that differentiate them. The components that are common to all three RAMP complexes include the OST translocon subcomplex, Glucosidase I and microtubule tethering protein CLIMP63. The two larger complexes further include the kinesin motor binding protein p180 and Sec61, and the largest complex includes the TRAP translocon component and apoptotic regulator BAP31. On the lumenal side, the BiP cochaperone ERdj3 resides with the three RAMP complexes. Our observations may hint at how subcompartmentalization is achieved in the ER membrane continuum.


Asunto(s)
Electroforesis en Gel Bidimensional/métodos , Electroforesis en Gel de Poliacrilamida/métodos , Proteínas de la Membrana/metabolismo , Animales , Western Blotting , Células HeLa , Humanos , Proteínas de la Membrana/química , Ratones , Células 3T3 NIH , Mapeo Peptídico/métodos , Proteómica/métodos , Ribosomas/metabolismo , Canales de Translocación SEC
2.
Mol Cell Biol ; 27(3): 1172-90, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17130234

RESUMEN

The protein tyrosine phosphatase PEST (PTP-PEST) is involved in the regulation of the actin cytoskeleton. Despite the emerging functions attributed to both PTPs and the actin cytoskeleton in apoptosis, the involvement of PTP-PEST in apoptotic cell death remains to be established. Using several cell-based assays, we showed that PTP-PEST participates in the regulation of apoptosis. As apoptosis progressed, a pool of PTP-PEST localized to the edge of retracting lamellipodia. Expression of PTP-PEST also sensitized cells to receptor-mediated apoptosis. Concertedly, specific degradation of PTP-PEST was observed during apoptosis. Pharmacological inhibitors, immunodepletion experiments, and in vitro cleavage assays identified caspase-3 as the primary regulator of PTP-PEST processing during apoptosis. Caspase-3 specifically cleaved PTP-PEST at the (549)DSPD motif and generated fragments, some of which displayed increased catalytic activity. Moreover, caspase-3 regulated PTP-PEST interactions with paxillin, leupaxin, Shc, and PSTPIP. PTP-PEST acted as a scaffolding molecule connecting PSTPIP to additional partners: paxillin, Shc, Csk, and activation of caspase-3 correlated with the modulation of the PTP-PEST adaptor function. In addition, cleavage of PTP-PEST facilitated cellular detachment during apoptosis. Together, our data demonstrate that PTP-PEST actively contributes to the cellular apoptotic response and reveal the importance of caspases as regulators of PTPs in apoptosis.


Asunto(s)
Apoptosis , Caspasa 3/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/farmacología , Catálisis/efectos de los fármacos , Extensiones de la Superficie Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Unión Proteica/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 12 , Proteínas Tirosina Fosfatasas/química , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato/efectos de los fármacos
3.
Cell Biochem Biophys ; 44(1): 73-81, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16456236

RESUMEN

Among several metals, vanadium has emerged as an extremely potent agent with insulin-like properties. These insulin-like properties have been demonstrated in isolated cells, tissues, different animal models of type I and type II diabetes as well as a limited number of human subjects. Vanadium treatment has been found to improve abnormalities of carbohydrate and lipid metabolism and of gene expression in rodent models of diabetes. In isolated cells, it enhances glucose transport, glycogen and lipid synthesis, and inhibits gluconeogenesis and lipolysis. The molecular mechanism responsible for the insulin-like effects of vanadium compounds have been shown to involve the activation of several key components of insulin-signaling pathways that include the mitogen-activated-protein kinases (MAPKs) extracellular signal-regulated kinase 1/2 (ERK1/2) and p38MAPK, and phosphatidylinositol 3-kinase (PI3-K)/protein kinase B (PKB). It is interesting that the vanadium effect on these signaling systems is independent of insulin receptor protein tyrosine kinase activity, but it is associated with enhanced tyrosine phosphorylation of insulin receptor substrate-1. These actions seem to be secondary to vanadium-induced inhibition of protein tyrosine phosphatases. Because MAPK and PI3-K/PKB pathways are implicated in mediating the mitogenic and metabolic effects of insulin, respectively, it is plausible that mimicry of these pathways by vanadium serves as a mechanism for its insulin-like responses.


Asunto(s)
Insulina/fisiología , Imitación Molecular/fisiología , Transducción de Señal/fisiología , Vanadio/farmacología , Animales , Humanos , Proteínas Sustrato del Receptor de Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/fisiología , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Receptor de Insulina/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Sci Signal ; 7(324): ra43, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24803538

RESUMEN

Both pro- and anti-inflammatory cytokines activate the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway; however, they elicit distinct transcriptional programs. Posttranslational modifications of STAT proteins, such as tyrosine phosphorylation, are critical to ensure the differential expression of STAT target genes. Although JAK-STAT signaling is dependent on reversible tyrosine phosphorylation, whether phosphatases contribute to the specificity of STAT-dependent gene expression is unclear. We examined the role of protein tyrosine phosphatase 1B (PTP1B) in regulating the interleukin-10 (IL-10)-dependent, STAT3-mediated anti-inflammatory response. We found that IL-10-dependent STAT3 phosphorylation and anti-inflammatory gene expression were enhanced in macrophages from PTP1B(-/-) mice compared to those in macrophages from wild-type mice. Consistent with this finding, the IL-10-dependent suppression of lipopolysaccharide-induced macrophage activation was increased in PTP1B(-/-) macrophages compared to that in wild-type macrophages, as was the IL-10-dependent increase in the cell surface expression of the anti-inflammatory cytokine receptor IL-4Rα. Furthermore, RNA sequencing revealed the expression of genes encoding proinflammatory factors in IL-10-treated PTP1B(-/-) macrophages, which correlated with increased phosphorylation of STAT1, which is not normally highly activated in response to IL-10. These findings identify PTP1B as a central regulator of IL-10R-STAT3 and IL-10R-STAT1 signaling, and demonstrate that phosphatases can tailor the quantitative and qualitative properties of cytokine-induced transcriptional responses.


Asunto(s)
Interleucina-10/fisiología , Macrófagos/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/fisiología , Transcripción Genética/fisiología , Animales , Subunidad alfa del Receptor de Interleucina-4/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Noqueados , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Factor de Transcripción STAT1/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis
5.
Blood ; 109(10): 4220-8, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17234741

RESUMEN

The T-cell protein tyrosine phosphatase (TC-PTP) is a negative regulator of the Jak/Stat cytokine signaling pathway. Our study shows that the absence of TC-PTP leads to an early bone marrow B-cell deficiency characterized by hindered transition from the pre-B cell to immature B-cell stage. This phenotype is intrinsic to the B cells but most importantly due to bone marrow stroma abnormalities. We found that bone marrow stromal cells from TC-PTP(-/-) mice have the unique property of secreting 232-890 pg/mL IFN-gamma. These high levels of IFN-gamma result in 2-fold reduction in mitotic index on IL-7 stimulation of TC-PTP(-/-) pre-B cells and lower responsiveness of IL-7 receptor downstream Jak/Stat signaling molecules. Moreover, we noted constitutive phosphorylation of Stat1 in those pre-B cells and demonstrated that this was due to soluble IFN-gamma secreted by TC-PTP(-/-) bone marrow stromal cells. Interestingly, culturing murine early pre-B leukemic cells within a TC-PTP-deficient bone marrow stroma environment leads to a 40% increase in apoptosis in these malignant cells. Our results unraveled a new role for TC-PTP in normal B lymphopoiesis and suggest that modulation of bone marrow microenvironment is a potential therapeutic approach for selected B-cell leukemia.


Asunto(s)
Linfocitos B/citología , Células de la Médula Ósea/metabolismo , Interferón gamma/metabolismo , Linfopoyesis/genética , Proteínas Tirosina Fosfatasas/genética , Células del Estroma/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Homeostasis/genética , Interleucina-7/farmacología , Ratones , Ratones Noqueados , Modelos Biológicos , Fosforilación , Proteínas Quinasas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2 , Proteínas Tirosina Fosfatasas/metabolismo , Factor de Transcripción STAT1/metabolismo
6.
Arch Biochem Biophys ; 420(1): 9-17, 2003 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-14622970

RESUMEN

Vanadium salts such as vanadyl sulfate (VS), potent inhibitors of protein tyrosine phosphatases, have been shown to mimic, augment, and prolong insulin's action. However, the molecular mechanism of responses to these salts is not clear. In the present studies, we examined if VS-induced effects on insulin action are associated with enhancement or augmentation in the activation state of key components of the insulin signaling pathway. Treatment of insulin receptor-overexpressing cells with insulin or VS resulted in a time-dependent transient increase in phosphorylation and activation of extracellular signal-regulated kinases 1 and 2 (ERK 1/2) that peaked at about 5 min, then declined rapidly to about baseline within 30 min. However, when the cells were treated with VS before stimulation with insulin, sustained ERK 1/2 phosphorylation and activation were observed well beyond 60 min. VS treatment also prolonged the insulin-stimulated activation of phosphatidylinositol 3-kinase (PI3-K), which was associated with sustained interaction between insulin receptor substrate-1 (IRS-1) and the p(85 alpha) subunit of phosphatidylinositol 3-kinase (PI3-K) in response to insulin. These data indicate that prolongation of insulin-stimulated ERK 1/2 and PI3-K activation by VS is due to a more stable complex formation of IRS-1 with the p(85 alpha) subunit which may, in turn, be responsible for its ability to enhance and extend the biological effects of insulin.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Insulina/farmacología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Compuestos de Vanadio/farmacología , Adaptación Fisiológica/efectos de los fármacos , Animales , Células CHO , Cricetinae , Cricetulus , Sinergismo Farmacológico , Activación Enzimática/fisiología , Humanos , Proteína Quinasa 1 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Especificidad por Sustrato
7.
J Biol Chem ; 277(4): 2973-86, 2002 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-11711533

RESUMEN

PSTPIP is a tyrosine-phosphorylated protein involved in the organization of the cytoskeleton. Its ectopic expression induces filipodial-like membrane extensions in NIH 3T3 cells. We previously observed a defect in cytokinesis and an increase in the tyrosine phosphorylation of PSTPIP in PTP-PEST-deficient fibroblasts. In this article, we demonstrate that PTP-PEST and PSTPIP are found in the same complexes in vivo and that they interact directly through the CTH domain of PTP-PEST and the coiled-coil domain of PSTPIP. We tested pathways that could regulate the tyrosine phosphorylation of PSTPIP. We found that the activation of the epidermal growth factor and platelet-derived growth factor receptors can induce PSTPIP phosphorylation. With the use of the PP2 inhibitor, we demonstrate that Src kinases are not involved in the epidermal growth factor-mediated phosphorylation of PSTPIP. Together with previous results, this suggests that c-Abl is the critical tyrosine kinase downstream of growth factor receptors responsible for PSTPIP phosphorylation. We also demonstrate that PTP-PEST dephosphorylates PSTPIP at tyrosine 344. Importantly, we identified tyrosine 344 as the main phosphorylation site of PSTPIP by performing tryptic phosphopeptide maps. This is an important finding since tyrosine 367 of PSTPIP was also proposed as a candidate phosphorylation site involved in the negative regulation of the association between PSTPIP and WASP. In this respect, we observed that the PSTPIP.WASP complex is stable in vivo and is not affected by the phosphorylation of PSTPIP. Furthermore, we demonstrate that PSTPIP serves as a scaffold protein between PTP-PEST and WASP and allows PTP-PEST to dephosphorylate WASP. This finding suggests a possible mechanism for PTP-PEST to directly modulate actin remodeling through the PSTPIP-WASP interaction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas/metabolismo , Células 3T3 , Actinas/metabolismo , Animales , Sitios de Unión , Western Blotting , Células COS , Línea Celular , Cromatografía en Capa Delgada , Fibroblastos/metabolismo , Glutatión Transferasa/metabolismo , Ratones , Microscopía Fluorescente , Proteína Oncogénica pp60(v-src)/metabolismo , Fosforilación , Plásmidos/metabolismo , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , Proteína Tirosina Fosfatasa no Receptora Tipo 12 , Transfección , Tirosina/química , Tirosina/metabolismo , Proteína del Síndrome de Wiskott-Aldrich , Dominios Homologos src
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA