Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(11): 8794-8806, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38420855

RESUMEN

The emergence of new variants of the novel coronavirus SARS-CoV-2 with increased infectivity, superior virulence, high transmissibility, and unmatched immune escape has demonstrated the adaptability and evolutionary fitness of the virus. The subject of relative order of the binding affinity of SARS-CoV-2 variants with the human ACE2 (hACE2) receptor is hotly debated and its resolution has implications for drug design and development. In this work, we have investigated the energetics of the binding of receptor binding domain (RBD) of SARS-CoV-2 variants of concern (VOCs): Beta (B.1.351), Delta (B.1.617.2), Omicron (B.1.1.529), variant of interest (VOI): Kappa (B.1.617.1), and Delta Plus (B.1.617.2.1) variant with the human ACE2 receptor by using the umbrella sampling (US) method. Our work indicates that Delta and Delta Plus variants have greater values of the US binding free energy than Wild-type (WT), whereas Beta, Kappa, and Omicron variants have lower values. Further analysis of hydrogen bonding, salt bridges, non-bonded interaction energy, and contact surface area at the RBD-hACE2 interface establish Delta as the variant with the highest binding affinity among these variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2 , Diseño de Fármacos , Unión Proteica , Mutación
2.
J Chem Inf Model ; 63(7): 2095-2103, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36563044

RESUMEN

Methyl CpG binding proteins (MBPs) are transcription factors that recognize the methylated CpG sites in DNA and mediate the DNA methylation signal into various downstream cellular processes. The C2H2 zinc finger (ZF) protein, Kaiso, also an MBP, preferentially binds to two symmetrically methylated CpG sites in DNA sequences via C-terminal C2H2 ZF domains and mediates the transcription regulation process. Investigation of the molecular mechanism of the recognition of methylated DNA (meDNA) by Kaiso is important to understand how this protein reads and translates this methylation signal into downstream transcription outcomes. Despite previous studies in Kaiso-meDNA interactions, detailed structural investigations on the sequence-specific interaction of Kaiso with the meDNA sequence are still lacking. In this work, we used molecular modeling and molecular dynamics (MD) simulation-based computational approaches to investigate the recognition of various methylated DNA sequences by Kaiso. Our MD simulation results show that the Kaiso-meDNA interaction is sequence specific. The recognition of meDNA by Kaiso is enhanced in the MeECad sequence compared to the MeCG2 sequence. Compared to the 5'-flanking T/A pair in MeCG2, both MeCG2_mutCG and MeECad sequences show that a C/G base pair allows GLU535 of Kaiso to preferably recognize and bind the core mCpG site. The core mCGmCG site is crucial for the recognition process and formation of a stable complex. Our results reveal that the 5'-flanking nucleotides are also important for the enhanced binding and recognition of methylated sites.


Asunto(s)
Factores de Transcripción , Dedos de Zinc , Islas de CpG , Dedos de Zinc/genética , Factores de Transcripción/química , ADN/química , Regulación de la Expresión Génica , Metilación de ADN , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA