Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Prog Polym Sci ; 1482024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38476148

RESUMEN

Stimuli-responsive nano-assemblies from amphiphilic macromolecules could undergo controlled structural transformations and generate diverse macroscopic phenomenon under stimuli. Due to the controllable responsiveness, they have been applied for broad material and biomedical applications, such as biologics delivery, sensing, imaging, and catalysis. Understanding the mechanisms of the assembly-disassembly processes and structural determinants behind the responsive properties is fundamentally important for designing the next generation of nano-assemblies with programmable responsiveness. In this review, we focus on structural determinants of assemblies from amphiphilic macromolecules and their macromolecular level alterations under stimuli, such as the disruption of hydrophilic-lipophilic balance (HLB), depolymerization, decrosslinking, and changes of molecular packing in assemblies, which eventually lead to a series of macroscopic phenomenon for practical purposes. Applications of stimuli-responsive nano-assemblies in delivery, sensing and imaging were also summarized based on their structural features. We expect this review could provide readers an overview of the structural considerations in the design and applications of nanoassemblies and incentivize more explorations in stimuli-responsive soft matters.

2.
J Am Chem Soc ; 146(1): 33-38, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38147631

RESUMEN

Inspired by the immune system's own strategy for macrophage activation, we describe here a simple self-assembly strategy for generating artificial immune complexes. The built-in recognition domains in the antibody, viz. the Fab and Fc domains, are judiciously leveraged for cargo conjugation to generate the nanoassembly and macrophage targeting, respectively. A responsive linker is engineered into the nanoassembly for releasing the protein cargo inside the macrophages, while ensuring stability during delivery. The design principles are simple and versatile to be applicable to a range of biologics, from small protein toxins to large enzymes, with high loading capacity. This self-assembly platform has the potential for delivering biologics to immune cells with implications in immunotherapy.


Asunto(s)
Productos Biológicos , Epítopos , Proteínas , Anticuerpos , Células Presentadoras de Antígenos
3.
Bioconjug Chem ; 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36972480

RESUMEN

Targeted delivery of therapeutics using antibody-nanogel conjugates (ANCs) with a high drug-to-antibody ratio has the potential to overcome some of the inherent limitations of antibody-drug conjugates (ADCs). ANC platforms with simple preparation methods and precise tunability to evaluate structure-activity relationships will greatly contribute to translating this promise into clinical reality. In this work, using trastuzumab as a model antibody, we demonstrate a block copolymer-based ANC platform that allows highly efficient antibody conjugation and formulation. In addition to showcasing the advantages of using an inverse electron-demand Diels-Alder (iEDDA)-based antibody conjugation, we evaluate the influence of antibody surface density and conjugation site on the nanogels upon the targeting capability of ANCs. We show that compared to traditional strain-promoted alkyne-azide cycloadditions, the preparation of ANCs using iEDDA provides significantly higher efficiency, which results in a shortened reaction time, simplified purification process, and enhanced targeting toward cancer cells. We also find that a site-specific disulfide-rebridging method in antibodies offers similar targeting abilities as the more indiscriminate lysine-based conjugation method. The more efficient bioconjugation using iEDDA allows us to optimize the avidity by fine-tuning the surface density of antibodies on the nanogel. Finally, with trastuzumab-mertansine (DM1) antibody-drug combination, our ANC demonstrates superior activities in vitro compared to the corresponding ADC, further highlighting the potential of ANCs in future clinical translation.

4.
Bioconjug Chem ; 34(6): 1130-1138, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37220065

RESUMEN

Targeted modification of endogenous proteins without genetic manipulation of protein expression machinery has a range of applications from chemical biology to drug discovery. Despite being demonstrated to be effective in various applications, target-specific protein labeling using ligand-directed strategies is limited by stringent amino acid selectivity. Here, we present highly reactive ligand-directed triggerable Michael acceptors (LD-TMAcs) that feature rapid protein labeling. Unlike previous approaches, the unique reactivity of LD-TMAcs enables multiple modifications on a single target protein, effectively mapping the ligand binding site. This capability is attributed to the tunable reactivity of TMAcs that enable the labeling of several amino acid functionalities via a binding-induced increase in local concentration while remaining fully dormant in the absence of protein binding. We demonstrate the target selectivity of these molecules in cell lysates using carbonic anhydrase as the model protein. Furthermore, we demonstrate the utility of this method by selectively labeling membrane-bound carbonic anhydrase XII in live cells. We envision that the unique features of LD-TMAcs will find use in target identification, investigation of binding/allosteric sites, and studying membrane proteins.


Asunto(s)
Aminoácidos , Proteínas de la Membrana , Ligandos , Sitios de Unión , Unión Proteica
5.
Langmuir ; 39(5): 1793-1803, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36693164

RESUMEN

Reactions at interfaces between fluid phases are widely used to synthesize small molecules, polymers, and nanoparticles. In situ monitoring of the underlying dynamic reaction pathways remains challenging. Liquid crystals (LCs) have been used to detect simple chemical transformations at interfaces in situations where interface-bound reactants and products trigger distinct equilibrium orientations of LCs. However, whether or not LCs can be used to report complex reaction pathways via nonequilibrium states generated by reactions has not been explored. Here we explore this question using SN2' nucleophilic substitution reactions that involve a synthetic amphiphile and a series of amine-based nucleophiles with one to four reaction sites. Although all reactants and products generate the same equilibrium LC orientation, we find that each nucleophile defines a distinct set of possible reaction pathways with a characteristic spatial and temporal LC optical response unique to the nucleophile. Additional experiments reveal that the nonequilibrium orientational states of the LCs arise from a combination of dynamic interfacial processes that include adsorption/desorption of reactants, the presence of reaction intermediates on the LC interface, and the generation of interfacial tension gradients (Marangoni stresses). Overall, our results reveal that the spatiotemporal optical outputs of LCs ("optical fingerprints") can be a rich source of information regarding interfacial reactions.

6.
Langmuir ; 39(45): 15932-15941, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37922483

RESUMEN

Optical control of phospholipids is an attractive option for the rapid, reversible, and tunable manipulation of membrane structure and dynamics. Azo-PC, a lipid with an azobenzene group within one acyl chain, undergoes a light-induced trans-to-cis isomerization and thus arises as a powerful tool for manipulating lipid order and dynamics. Here, we report on vesicle-scale micropipette measurements and atomistic simulations to probe the elastic stretching modulus, water permeability, toughness, thickness, and membrane area upon isomerization. We investigated both dynamics and steady-state properties. In pure azo-PC membranes, we found that the molecular area in trans was 16% smaller than that in cis, the membrane's stretching modulus kA was 2.5 ± 0.3 times greater, and the water permeability PW was 3.5 ± 0.5 times smaller. We also studied mixtures of azo-PC with the miscible, unsaturated lipid DOPC. Atomistic molecular dynamics simulations show how the membrane thickness, chain order, and correlations across membrane leaflets explain the experimental data. Together, these data show how one rotating bond changes the molecular- and membrane-scale properties. These results will be useful for photopharmacology and for developing new materials whose permeability, elasticity, and toughness may be switched on demand.


Asunto(s)
Membrana Dobles de Lípidos , Fosfolípidos , Membrana Dobles de Lípidos/química , Fosfolípidos/química , Simulación de Dinámica Molecular , Permeabilidad , Agua/química , Fosfatidilcolinas/química
7.
Biomacromolecules ; 24(8): 3638-3646, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37478281

RESUMEN

Antibody drug conjugates (ADCs) are poised to have an enormous impact on targeted nanomedicine, especially in many cancer pathologies. The reach of the current format of ADCs is limited by their low drug-to-antibody ratio (DAR) because of the associated physiochemical instabilities. Here, we design antibody polymer conjugates (APCs) as a modular strategy to utilize polymers to address ADC's shortcomings. We show here that conjugation of polymer-based therapeutic molecules to antibodies helps increase the DAR, owing to the hydrophilic comonomer in the polymer that helps in masking the increased hydrophobicity caused by high drug loading. We show that the platform exhibits cell targetability and selective cell killing in multiple cell lines expressing disease-relevant antigens, viz., HER2 and EGFR. The ability to use different functionalities in the drug as the handle for polymer attachment further demonstrates the platform nature of APCs. The findings here could serve as an alternative design strategy for the next generation of active targeted nanomedicine.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Anticuerpos , Inmunoconjugados/química , Preparaciones Farmacéuticas , Antígenos , Polímeros , Antineoplásicos/química
8.
Biomacromolecules ; 24(2): 849-857, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639133

RESUMEN

Targeted drug delivery using antibody-drug conjugates has attracted great attention due to its enhanced therapeutic efficacy compared to traditional chemotherapy. However, the development has been limited due to a low drug-to-antibody ratio and laborious linker-payload optimization. Herein, we present a simple and efficient strategy to combine the favorable features of polymeric nanocarriers with antibodies to generate an antibody-nanogel conjugate (ANC) platform for targeted delivery of cytotoxic agents. Our nanogels stably encapsulate several chemotherapeutic agents with a wide range of mechanisms of action and solubility. We showcase the targetability of ANCs and their selective killing of cancer cells over-expressing disease-relevant antigens such as human epidermal growth factor receptor 2, epidermal growth factor receptor, and tumor-specific mucin 1, which cover a broad range of breast cancer cell types while maintaining low to no toxicity to non-targeted cells. Overall, our system represents a versatile approach that could impact next-generation nanomedicine in antibody-targeted therapeutics.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Humanos , Nanogeles , Neoplasias/tratamiento farmacológico , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Sistemas de Liberación de Medicamentos , Línea Celular Tumoral
9.
Anal Chem ; 94(22): 7901-7908, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35612963

RESUMEN

Polymeric nanocarriers (PNCs) are versatile drug delivery vehicles capable of delivering a variety of therapeutics. Quantitatively monitoring their uptake in biological systems is essential for realizing their potential as next-generation delivery systems; however, existing quantification strategies are limited due to the challenges of detecting polymeric materials in complex biological samples. Here, we describe a metal-coded mass tagging approach that enables the multiplexed quantification of the PNC uptake in cells using mass spectrometry (MS). In this approach, PNCs are conjugated with ligands that bind strongly to lanthanide ions, allowing the PNCs to be sensitively quantitated by inductively coupled plasma-MS. The metal-coded tags have little effect on the properties or toxicity of the PNCs, making them biocompatible. We demonstrate that the conjugation of different metals to the PNCs enables the multiplexed analysis of cellular uptake of multiple distinct PNCs at the same time. This multiplexing capability should improve the design and optimization of PNCs by minimizing biological variability and reducing analysis time, effort, and cost.


Asunto(s)
Elementos de la Serie de los Lantanoides , Polímeros , Elementos de la Serie de los Lantanoides/química , Espectrometría de Masas/métodos , Polímeros/química , Análisis Espectral
10.
Anal Chem ; 94(37): 12699-12705, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36054755

RESUMEN

Reporting the activity of a specific viral protease remains an acute need for rapid point-of-care detection strategies that can distinguish active infection from a resolved infection. In this work, we present a simple colorimetric approach for reporting the activity of a specific viral protease through direct color conversion on a cotton swab, which has the potential to be extended to detect the corresponding virus. We use SARS-CoV-2 viral protease as a proof-of-concept model system. We use 4-aminomalachite green (4-AMG) as the base chromophore structure to design a CoV2-AMG reporter, which is selective toward the SARS-CoV-2 Mpro but does not produce any observable color change in the presence of other viral proteases. The color change is observable by the naked eye, as well as smartphone imaging, which affords a lower limit of detection. The simplicity and generalizability of the method could be instrumental in combating future viral outbreaks.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Colorimetría/métodos , Humanos , Péptido Hidrolasas , Proteasas Virales
11.
Bioconjug Chem ; 33(11): 1996-2007, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-35377622

RESUMEN

Recent success of mRNA-based COVID-19 vaccines have bolstered the strength of nucleic acids as a therapeutic platform. The number of new clinical trial candidates is skyrocketing with the potential to address many unmet clinical needs. Despite advancements in other aspects, the systemic delivery of nucleic acids to target sites remains a major challenge. Thus, nucleic acid based therapy has yet to reach its full potential. In this review, we shed light on a select few prospective technologies that exhibit substantial potential over traditional nanocarrier designs for nucleic acid delivery. We critically analyze these systems with specific attention to the possibilities for clinical translation.


Asunto(s)
COVID-19 , Nanopartículas , Ácidos Nucleicos , Humanos , Ácidos Nucleicos/uso terapéutico , Vacunas contra la COVID-19 , Estudios Prospectivos
12.
Bioconjug Chem ; 33(3): 486-495, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35139308

RESUMEN

Targeted delivery of chemotherapeutic drugs can improve their therapeutic efficiency by localizing their toxic effects at the diseased site. This is often achieved either by direct conjugation of drugs to antibodies targeting overexpressed receptors on cancer cells (antibody-drug conjugates/ADCs) or by conjugating antibodies to nanoparticles bearing drugs (antibody-nanoparticle conjugates/ANCs). Here, we report a platform for utilizing hinge cysteines on antigen-binding fragment (Fab') of an anti-CD4 antibody for site-specific conjugation to nanoparticles giving rise to anti-CD4 Fab'-nanoparticle conjugates (Fab'-NCs). We demonstrate a convenient route for obtaining functional anti-CD4 Fab' from full-length antibody and examine the targeted delivery efficiencies of anti-CD4 Fab'-NCs vs ANCs for selective delivery to CD4high mT-ALL cells. Our results indicate that higher avidity of full-length anti-CD4 antibody, i.e., protein alone translated to higher binding ability to CD4high mT-ALL cells in comparison with anti-CD4 Fab' alone. However, the targeted delivery efficiency of anti-CD4 Fab'-NCs was comparable to ANCs indicating that the avidity of Fab' is restored in a nanoparticle-conjugate format. Fab'-NCs are equally capable of achieving targeted drug delivery to CD4high T-cells as ANCs and are a versatile alternative to ANCs by offering site-selective modification strategy while retaining their advantages.


Asunto(s)
Inmunoconjugados , Nanopartículas , Anticuerpos Monoclonales , Linfocitos T CD4-Positivos , Fragmentos Fab de Inmunoglobulinas
13.
Biomacromolecules ; 23(1): 339-348, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34890192

RESUMEN

Disulfide cross-linked nanoassemblies have attracted considerable attention as a drug delivery vehicle due to their responsiveness to the natural redox gradient in biology. Fundamentally understanding the factors that influence the drug loading capacity, encapsulation stability, and precise control of the liberation of encapsulated cargo would be profoundly beneficial to redox-responsive materials. Reported herein are block copolymer (BCP)-based self-cross-linked nanogels, which exhibit high drug loading capacity, high encapsulation stability, and controllable release kinetics. BCP nanogels show considerably higher loading capacity and better encapsulation stability than the random copolymer nanogels at micromolar glutathione concentrations. By partially substituting thiol-reactive pyridyl disulfide into the unreactive benzyl or butyl group, we observed opposite effects on the cross-linking process of BCP nanogels. We further studied the redox-responsive cytotoxicity of our drug-encapsulated nanogels in various cancer cell lines.


Asunto(s)
Polietilenglicoles , Polímeros , Portadores de Fármacos/química , Liberación de Fármacos , Nanogeles , Oxidación-Reducción , Preparaciones Farmacéuticas , Polietilenglicoles/química , Polímeros/química
14.
Angew Chem Int Ed Engl ; 61(37): e202209227, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35866880

RESUMEN

Endosomal entrapment has remained the major bottleneck for cytosolic delivery of nanoparticle-based delivery systems. Uncovering fundamentally new pathways for endosomal escape is therefore highly sought. Herein, we report that disulfide bonds can enhance endosomal escape through contacts with cellular exofacial thiols, in addition to facilitating cellular uptake. Our results are supported through comparative analysis of polymeric nanogels with variable accessibility to disulfide bonds by placing these functionalities at the core or the shell of the nanogels. The findings here inform future chemical design of delivery vehicles.


Asunto(s)
Nanopartículas , Compuestos de Sulfhidrilo , Disulfuros/metabolismo , Endosomas/metabolismo , Nanogeles , Nanopartículas/química , Polímeros/química , Compuestos de Sulfhidrilo/química
15.
Biochemistry ; 60(13): 966-990, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33428850

RESUMEN

Self-assembled nanostructures that are sensitive to environmental stimuli are promising nanomaterials for drug delivery. In this class, disulfide-containing redox-sensitive strategies have gained enormous attention because of their wide applicability and simplicity of nanoparticle design. In the context of nucleic acid delivery, numerous disulfide-based materials have been designed by relying on covalent or noncovalent interactions. In this review, we highlight major advances in the design of disulfide-containing materials for nucleic acid encapsulation, including covalent nucleic acid conjugates, viral vectors or virus-like particles, dendrimers, peptides, polymers, lipids, hydrogels, inorganic nanoparticles, and nucleic acid nanostructures. Our discussion will focus on the context of the design of materials and their impact on addressing the current shortcomings in the intracellular delivery of nucleic acids.


Asunto(s)
ADN/química , Disulfuros/química , Portadores de Fármacos/química , ARN/química , Diseño de Fármacos
16.
J Am Chem Soc ; 143(49): 20735-20746, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34870962

RESUMEN

A new multicomponent reaction involving 2-hydroxybenzaldehyde, amine, and 2-mercaptobenzaldehyde (HAM reaction) has been developed and applied to multicomponent polymerization and controlled radical polymerization for the construction of random and block copolymers. This chemistry features mild reaction conditions, high yield, simple isolation, and water as the only byproduct. With the advantages of the distinct nucleophilicity of thiol and hydroxyl groups, the chemistry could be used for stepwise labeling and modifications on primary amines. The Janus chemical joint formed from this reaction exhibits degradability in buffers and generates the corresponding starting reagents, allowing amine release. Interestingly, the chemical joint exhibits thermally activated reversibility with water as the catalyst. This multicomponent dynamic covalent feature has been applied to the metamorphosis of random and block copolymers, generating polymers with diverse architectures. This chemistry is expected to be broadly applicable to synthetic polymer chemistry and materials science.

17.
Adv Funct Mater ; 31(24)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35832306

RESUMEN

Nucleic acids are now considered as one of the most potent therapeutic modalities, as their roles go beyond storing genetic information and chemical energy or as signal transducer. Attenuation or expression of desired genes through nucleic acids have profound implications in gene therapy, gene editing and even in vaccine development for immunomodulation. Although nucleic acid therapeutics bring in overwhelming possibilities towards the development of molecular medicines, there are significant loopholes in designing and effective translation of these drugs into the clinic. One of the major pitfalls lies in the traditional design concepts for nucleic acid drug carriers, viz. cationic charge induced cytotoxicity in delivery pathway. Targeting this bottleneck, several pioneering research efforts have been devoted to design innovative carriers through charge-conversion approaches, whereby built-in functionalities convert from cationic to neutral or anionic, or even from anionic to cationic enabling the carrier to overcome several critical barriers for therapeutics delivery, such as serum deactivation, instability in circulation, low transfection and poor endosomal escape. This review will critically analyze various molecular designs of charge-converting nanocarriers in a classified approach for the successful delivery of nucleic acids. Accompanied by the narrative on recent clinical nucleic acid candidates, the review concludes with a discussion on the pitfalls and scope of these interesting approaches.

18.
Langmuir ; 37(8): 2826-2832, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33577731

RESUMEN

Hydrodynamic approaches are important for biomedical diagnostics, chemical analysis, and a broad range of industrial applications. Size-based separation and sorting is an important tool for these applications. We report the integration of hypersound technology with patterned protein films to provide efficient sorting of microparticles based on particle charge and size. We employed a hypersonic resonator for the acoustic streaming of the fluidic system to generate microvortices that exert drag forces on the objects on the surface that are dictated by their radius of curvature. We demonstrate a size-based sorting of anionic silica particles using protein patterns and gradients fabricated using attractive cationic and repulsive anionic proteins.


Asunto(s)
Acústica , Hidrodinámica , Fenómenos Mecánicos , Tamaño de la Partícula , Dióxido de Silicio
19.
Biomacromolecules ; 22(3): 1261-1272, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33591168

RESUMEN

The ability for biologics to access intracellular targets hinges on the translocation of active, unmodified proteins. This is often achieved using nanoscale formulations, which enter cells through endocytosis. This uptake mechanism often limits the therapeutic potential of the biologics, as the propensity of the nanocarrier to escape the endosome becomes the key determinant. To appropriately evaluate and compare competing delivery systems of disparate compositions, it is therefore critical to assess endosomal escape efficiencies. Unfortunately, quantitative tools to assess endosomal escape are lacking, and standard approaches often lead to an erroneous interpretation of cytosolic localization. In this study we use a split-complementation endosomal escape (SEE) assay to evaluate levels of cytosolic caspase-3 following delivery by polymer nanogels and mesoporous silica nanoparticles. In particular, we use SEE as a means to enable the systematic investigation of the effect of polymer composition, polymer architecture (random vs block), hydrophobicity, and surface functionality. Although polymer structure had little influence on endosomal escape, nanogel functionalization with cationic and pH-sensitive peptides significantly enhanced endosomal escape levels and, further, significantly increased the amount of nanogel per endosome. This work serves as a guide for developing an optimal caspase-3 delivery system, as this caspase-3 variant can be easily substituted for a therapeutic caspase-3 cargo in any system that results in cytosolic accumulation and cargo release. In addition, these data provide a framework that can be readily applied to a wide variety of protein cargos to assess the independent contributions of both uptake and endosomal escape of a wide range of protein delivery vehicles.


Asunto(s)
Endosomas , Nanopartículas , Caspasa 3 , Endocitosis , Polímeros
20.
Soft Matter ; 17(30): 7069-7075, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34304254

RESUMEN

Lipid bilayer vesicles offer exciting possibilities for stimulated response, taking advantage of the membrane's flexibility and impermeability. We show how synergistic interactions between vesicles and polymer-based nanoparticles can be triggered at the nanoscale using UV light. This interaction leads either to adhesion and a membrane-based gel, or to nanoscale wrapping of the particles by the membrane and then vesicle destruction. To map the response, we varied the particle-membrane interactions via their surface charge densities. We found a crossover from adhesion to destruction at a well-defined region in parameter space. We modeled these results by accounting for the electrostatic attraction and the energy of membrane bending. We then synthesized amphiphilic polymers containing a UV-responsive nitrobenzyl moiety that switches its charge, and showed how a trigger predictably led to either a vesicle gel or disruption and release. The results pave the way to a new triggering mechanism and new response modes in soft materials.


Asunto(s)
Membrana Dobles de Lípidos , Nanopartículas , Fenómenos Biofísicos , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA