Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(7): 1343-1358.e8, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35271816

RESUMEN

Nucleotide excision repair (NER) counteracts the onset of cancer and aging by removing helix-distorting DNA lesions via a "cut-and-patch"-type reaction. The regulatory mechanisms that drive NER through its successive damage recognition, verification, incision, and gap restoration reaction steps remain elusive. Here, we show that the RAD5-related translocase HLTF facilitates repair through active eviction of incised damaged DNA together with associated repair proteins. Our data show a dual-incision-dependent recruitment of HLTF to the NER incision complex, which is mediated by HLTF's HIRAN domain that binds 3'-OH single-stranded DNA ends. HLTF's translocase motor subsequently promotes the dissociation of the stably damage-bound incision complex together with the incised oligonucleotide, allowing for an efficient PCNA loading and initiation of repair synthesis. Our findings uncover HLTF as an important NER factor that actively evicts DNA damage, thereby providing additional quality control by coordinating the transition between the excision and DNA synthesis steps to safeguard genome integrity.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN , ADN/genética , ADN/metabolismo , Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética
2.
Nucleic Acids Res ; 51(17): 9055-9074, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37470997

RESUMEN

The SWI/SNF family of ATP-dependent chromatin remodeling complexes is implicated in multiple DNA damage response mechanisms and frequently mutated in cancer. The BAF, PBAF and ncBAF complexes are three major types of SWI/SNF complexes that are functionally distinguished by their exclusive subunits. Accumulating evidence suggests that double-strand breaks (DSBs) in transcriptionally active DNA are preferentially repaired by a dedicated homologous recombination pathway. We show that different BAF, PBAF and ncBAF subunits promote homologous recombination and are rapidly recruited to DSBs in a transcription-dependent manner. The PBAF and ncBAF complexes promote RNA polymerase II eviction near DNA damage to rapidly initiate transcriptional silencing, while the BAF complex helps to maintain this transcriptional silencing. Furthermore, ARID1A-containing BAF complexes promote RNaseH1 and RAD52 recruitment to facilitate R-loop resolution and DNA repair. Our results highlight how multiple SWI/SNF complexes perform different functions to enable DNA repair in the context of actively transcribed genes.


Asunto(s)
Proteínas Cromosómicas no Histona , Estructuras R-Loop , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN , Reparación del ADN/genética , Recombinación Homóloga/genética , Humanos
3.
Hum Mol Genet ; 30(18): 1711-1720, 2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-33909043

RESUMEN

Trichothiodystrophy (TTD) is a rare hereditary neurodevelopmental disorder defined by sulfur-deficient brittle hair and nails and scaly skin, but with otherwise remarkably variable clinical features. The photosensitive TTD (PS-TTD) forms exhibits in addition to progressive neuropathy and other features of segmental accelerated aging and is associated with impaired genome maintenance and transcription. New factors involved in various steps of gene expression have been identified for the different non-photosensitive forms of TTD (NPS-TTD), which do not appear to show features of premature aging. Here, we identify alanyl-tRNA synthetase 1 and methionyl-tRNA synthetase 1 variants as new gene defects that cause NPS-TTD. These variants result in the instability of the respective gene products alanyl- and methionyl-tRNA synthetase. These findings extend our previous observations that TTD mutations affect the stability of the corresponding proteins and emphasize this phenomenon as a common feature of TTD. Functional studies in skin fibroblasts from affected individuals demonstrate that these new variants also impact on the rate of tRNA charging, which is the first step in protein translation. The extension of reduced abundance of TTD factors to translation as well as transcription redefines TTD as a syndrome in which proteins involved in gene expression are unstable.


Asunto(s)
Alanina-ARNt Ligasa/genética , Metionina-ARNt Ligasa/genética , Síndromes de Tricotiodistrofia/genética , Alanina-ARNt Ligasa/metabolismo , Niño , Estabilidad de Enzimas/genética , Femenino , Humanos , Metionina-ARNt Ligasa/metabolismo , Síndromes de Tricotiodistrofia/enzimología , Síndromes de Tricotiodistrofia/patología , Secuenciación Completa del Genoma
4.
Cell Mol Life Sci ; 79(3): 166, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35230528

RESUMEN

The XPG/ERCC5 endonuclease was originally identified as the causative gene for Xeroderma Pigmentosum complementation group G. Ever since its discovery, in depth biochemical, structural and cell biological studies have provided detailed mechanistic insight into its function in excising DNA damage in nucleotide excision repair, together with the ERCC1-XPF endonuclease. In recent years, it has become evident that XPG has additional important roles in genome maintenance that are independent of its function in NER, as XPG has been implicated in protecting replication forks by promoting homologous recombination as well as in resolving R-loops. Here, we provide an overview of the multitasking of XPG in genome maintenance, by describing in detail how its activity in NER is regulated and the evidence that points to important functions outside of NER. Furthermore, we present the various disease phenotypes associated with inherited XPG deficiency and discuss current ideas on how XPG deficiency leads to these different types of disease.


Asunto(s)
Proteínas de Unión al ADN/genética , Endonucleasas/genética , Genoma/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Reparación del ADN/genética , Replicación del ADN/genética , Humanos , Xerodermia Pigmentosa/genética
5.
Neurogenetics ; 23(4): 271-274, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35920923

RESUMEN

Cockayne syndrome is a rare inherited DNA repair multisystemic disorder. Here, we aim to raise awareness of the phenotypic resemblances between Cockayne syndrome and the neurodevelopmental disorder caused by pathogenic variants in MORC2, a gene also involved in DNA repair. Using exome sequencing, we identified a de novo pathogenic variant in MORC2 in our patient. Our patient's phenotype was characterized by multiple features evocative of Cockayne syndrome. Based on our patient's phenotype, in addition to the phenotypic description of patients with pathogenic variants in MORC2 reported in the literature, we suggest that pathogenic variants in this gene are associated with a Cockayne-like phenotype.


Asunto(s)
Síndrome de Cockayne , Trastornos del Neurodesarrollo , Humanos , Síndrome de Cockayne/genética , Fenotipo , Trastornos del Neurodesarrollo/genética , Secuenciación del Exoma , Factores de Transcripción/genética
6.
Am J Hum Genet ; 105(2): 434-440, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374204

RESUMEN

Brittle and "tiger-tail" hair is the diagnostic hallmark of trichothiodystrophy (TTD), a rare recessive disease associated with a wide spectrum of clinical features including ichthyosis, intellectual disability, decreased fertility, and short stature. As a result of premature abrogation of terminal differentiation, the hair is brittle and fragile and contains reduced cysteine content. Hypersensitivity to UV light is found in about half of individuals with TTD; all of these individuals harbor bi-allelic mutations in components of the basal transcription factor TFIIH, and these mutations lead to impaired nucleotide excision repair and basal transcription. Different genes have been found to be associated with non-photosensitive TTD (NPS-TTD); these include MPLKIP (also called TTDN1), GTF2E2 (also called TFIIEß), and RNF113A. However, a relatively large group of these individuals with NPS-TTD have remained genetically uncharacterized. Here we present the identification of an NPS-TTD-associated gene, threonyl-tRNA synthetase (TARS), found by next-generation sequencing of a group of uncharacterized individuals with NPS-TTD. One individual has compound heterozygous TARS variants, c.826A>G (p.Lys276Glu) and c.1912C>T (p.Arg638∗), whereas a second individual is homozygous for the TARS variant: c.680T>C (p.Leu227Pro). We showed that these variants have a profound effect on TARS protein stability and enzymatic function. Our results expand the spectrum of genes involved in TTD to include genes implicated in amino acid charging of tRNA, which is required for the last step in gene expression, namely protein translation. We previously proposed that some of the TTD-specific features derive from subtle transcription defects as a consequence of unstable transcription factors. We now extend the definition of TTD from a transcription syndrome to a "gene-expression" syndrome.


Asunto(s)
Enfermedades del Cabello/patología , Mutación , Treonina-ARNt Ligasa/genética , Síndromes de Tricotiodistrofia/patología , Alelos , Secuencia de Aminoácidos , Estudios de Casos y Controles , Enfermedades del Cabello/genética , Humanos , Fenotipo , Homología de Secuencia , Factor de Transcripción TFIIH/genética , Síndromes de Tricotiodistrofia/genética
7.
Am J Hum Genet ; 104(3): 520-529, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30824121

RESUMEN

Aminoacyl-tRNA synthetases (ARSs) are essential enzymes responsible for charging tRNA molecules with cognate amino acids. Consistent with the essential function and ubiquitous expression of ARSs, mutations in 32 of the 37 ARS-encoding loci cause severe, early-onset recessive phenotypes. Previous genetic and functional data suggest a loss-of-function mechanism; however, our understanding of the allelic and locus heterogeneity of ARS-related disease is incomplete. Cysteinyl-tRNA synthetase (CARS) encodes the enzyme that charges tRNACys with cysteine in the cytoplasm. To date, CARS variants have not been implicated in any human disease phenotype. Here, we report on four subjects from three families with complex syndromes that include microcephaly, developmental delay, and brittle hair and nails. Each affected person carries bi-allelic CARS variants: one individual is compound heterozygous for c.1138C>T (p.Gln380∗) and c.1022G>A (p.Arg341His), two related individuals are compound heterozygous for c.1076C>T (p.Ser359Leu) and c.1199T>A (p.Leu400Gln), and one individual is homozygous for c.2061dup (p.Ser688Glnfs∗2). Measurement of protein abundance, yeast complementation assays, and assessments of tRNA charging indicate that each CARS variant causes a loss-of-function effect. Compared to subjects with previously reported ARS-related diseases, individuals with bi-allelic CARS variants are unique in presenting with a brittle-hair-and-nail phenotype, which most likely reflects the high cysteine content in human keratins. In sum, our efforts implicate CARS variants in human inherited disease, expand the locus and clinical heterogeneity of ARS-related clinical phenotypes, and further support impaired tRNA charging as the primary mechanism of recessive ARS-related disease.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Enfermedad de Charcot-Marie-Tooth/etiología , Discapacidades del Desarrollo/etiología , Enfermedades del Cabello/etiología , Microcefalia/etiología , Mutación , Enfermedades de la Uña/etiología , Adulto , Secuencia de Aminoácidos , Enfermedad de Charcot-Marie-Tooth/enzimología , Enfermedad de Charcot-Marie-Tooth/patología , Discapacidades del Desarrollo/enzimología , Discapacidades del Desarrollo/patología , Femenino , Genes Recesivos , Predisposición Genética a la Enfermedad , Enfermedades del Cabello/enzimología , Enfermedades del Cabello/patología , Humanos , Masculino , Microcefalia/enzimología , Microcefalia/patología , Enfermedades de la Uña/enzimología , Enfermedades de la Uña/patología , Linaje , Fenotipo , Pronóstico , Homología de Secuencia , Adulto Joven
8.
Mol Cell ; 51(4): 469-79, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23973375

RESUMEN

Chromatin remodeling is tightly linked to all DNA-transacting activities. To study chromatin remodeling during DNA repair, we established quantitative fluorescence imaging methods to measure the exchange of histones in chromatin in living cells. We show that particularly H2A and H2B are evicted and replaced at an accelerated pace at sites of UV-induced DNA damage. This accelerated exchange of H2A/H2B is facilitated by SPT16, one of the two subunits of the histone chaperone FACT (facilitates chromatin transcription) but largely independent of its partner SSRP1. Interestingly, SPT16 is targeted to sites of UV light-induced DNA damage-arrested transcription and is required for efficient restart of RNA synthesis upon damage removal. Together, our data uncover an important role for chromatin dynamics at the crossroads of transcription and the UV-induced DNA damage response.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Daño del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Histonas/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Rayos Ultravioleta , Western Blotting , Proteínas de Ciclo Celular , Inmunoprecipitación de Cromatina , Reactivos de Enlaces Cruzados/farmacología , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Células HeLa , Proteínas del Grupo de Alta Movilidad/genética , Histonas/genética , Humanos , Nucleosomas/genética , ARN/genética , ARN/metabolismo , Factores de Transcripción , Factores de Elongación Transcripcional/genética
9.
Proc Natl Acad Sci U S A ; 115(19): E4368-E4376, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29632207

RESUMEN

Initiation and promoter-proximal pausing are key regulatory steps of RNA Polymerase II (Pol II) transcription. To study the in vivo dynamics of endogenous Pol II during these steps, we generated fully functional GFP-RPB1 knockin cells. GFP-RPB1 photobleaching combined with computational modeling revealed four kinetically distinct Pol II fractions and showed that on average 7% of Pol II are freely diffusing, while 10% are chromatin-bound for 2.4 seconds during initiation, and 23% are promoter-paused for only 42 seconds. This unexpectedly high turnover of Pol II at promoters is most likely caused by premature termination of initiating and promoter-paused Pol II and is in sharp contrast to the 23 minutes that elongating Pol II resides on chromatin. Our live-cell-imaging approach provides insights into Pol II dynamics and suggests that the continuous release and reinitiation of promoter-bound Pol II is an important component of transcriptional regulation.


Asunto(s)
Regiones Promotoras Genéticas/fisiología , ARN Polimerasa II/metabolismo , Transcripción Genética/fisiología , Línea Celular Transformada , Técnicas de Sustitución del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , ARN Polimerasa II/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
10.
Nucleic Acids Res ; 46(18): 9537-9549, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30137419

RESUMEN

Sensitivity and resistance of cells to platinum drug chemotherapy are to a large extent determined by activity of the DNA damage response (DDR). Combining chemotherapy with inhibition of specific DDR pathways could therefore improve treatment efficacy. Multiple DDR pathways have been implicated in removal of platinum-DNA lesions, but it is unclear which exact pathways are most important to cellular platinum drug resistance. Here, we used CRISPR/Cas9 screening to identify DDR proteins that protect colorectal cancer cells against the clinically applied platinum drug oxaliplatin. We find that besides the expected homologous recombination, Fanconi anemia and translesion synthesis pathways, in particular also transcription-coupled nucleotide excision repair (TC-NER) and base excision repair (BER) protect against platinum-induced cytotoxicity. Both repair pathways are required to overcome oxaliplatin- and cisplatin-induced transcription arrest. In addition to the generation of DNA crosslinks, exposure to platinum drugs leads to reactive oxygen species production that induces oxidative DNA lesions, explaining the requirement for BER. Our findings highlight the importance of transcriptional integrity in cells exposed to platinum drugs and suggest that both TC-NER and BER should be considered as targets for novel combinatorial treatment strategies.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Cisplatino/efectos adversos , Cisplatino/química , Neoplasias Colorrectales/genética , Reparación del ADN/genética , Replicación del ADN/efectos de los fármacos , Humanos , Oxaliplatino/efectos adversos , Oxaliplatino/química , Platino (Metal)/efectos adversos , Platino (Metal)/química , Especies Reactivas de Oxígeno/química
11.
Nucleic Acids Res ; 46(18): 9563-9577, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30165384

RESUMEN

The structure-specific ERCC1-XPF endonuclease plays a key role in DNA damage excision by nucleotide excision repair (NER) and interstrand crosslink repair. Mutations in this complex can either cause xeroderma pigmentosum (XP) or XP combined with Cockayne syndrome (XPCS-complex) or Fanconi anemia. However, most patients carry compound heterozygous mutations, which confounds the dissection of the phenotypic consequences for each of the identified XPF alleles. Here, we analyzed the functional impact of individual pathogenic XPF alleles on NER. We show that XP-causing mutations diminish XPF recruitment to DNA damage and only mildly affect global genome NER. In contrast, an XPCS-complex-specific mutation causes persistent recruitment of XPF and the upstream core NER machinery to DNA damage and severely impairs both global genome and transcription-coupled NER. Remarkably, persistence of NER factors at DNA damage appears to be a common feature of XPCS-complex cells, suggesting that this could be a determining factor contributing to the development of additional developmental and/or neurodegenerative features in XP patients.


Asunto(s)
Síndrome de Cockayne/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Xerodermia Pigmentosa/genética , Alelos , Línea Celular , Síndrome de Cockayne/patología , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/química , Endonucleasas/química , Anemia de Fanconi/genética , Anemia de Fanconi/patología , Genoma Humano/genética , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mutación/genética , Multimerización de Proteína/genética
12.
Nucleic Acids Res ; 46(15): 7747-7756, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-29955842

RESUMEN

Transcription-coupled nucleotide excision repair factor Cockayne syndrome protein B (CSB) was suggested to function in the repair of oxidative DNA damage. However thus far, no clear role for CSB in base excision repair (BER), the dedicated pathway to remove abundant oxidative DNA damage, could be established. Using live cell imaging with a laser-assisted procedure to locally induce 8-oxo-7,8-dihydroguanine (8-oxoG) lesions, we previously showed that CSB is recruited to these lesions in a transcription-dependent but NER-independent fashion. Here we showed that recruitment of the preferred 8-oxoG-glycosylase 1 (OGG1) is independent of CSB or active transcription. In contrast, recruitment of the BER-scaffolding protein, X-ray repair cross-complementing protein 1 (XRCC1), to 8-oxoG lesions is stimulated by CSB and transcription. Remarkably, recruitment of XRCC1 to BER-unrelated single strand breaks (SSBs) does not require CSB or transcription. Together, our results suggest a specific transcription-dependent role for CSB in recruiting XRCC1 to BER-generated SSBs, whereas XRCC1 recruitment to SSBs generated independently of BER relies predominantly on PARP activation. Based on our results, we propose a model in which CSB plays a role in facilitating BER progression at transcribed genes, probably to allow XRCC1 recruitment to BER-intermediates masked by RNA polymerase II complexes stalled at these intermediates.


Asunto(s)
Daño del ADN , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Reparación del ADN , ADN/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Transcripción Genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Línea Celular , ADN/metabolismo , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Células HEK293 , Humanos , Modelos Genéticos , Oxidación-Reducción , Estrés Oxidativo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo
13.
Hum Mol Genet ; 26(23): 4689-4698, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973399

RESUMEN

The rare recessive developmental disorder Trichothiodystrophy (TTD) is characterized by brittle hair and nails. Patients also present a variable set of poorly explained additional clinical features, including ichthyosis, impaired intelligence, developmental delay and anemia. About half of TTD patients are photosensitive due to inherited defects in the DNA repair and transcription factor II H (TFIIH). The pathophysiological contributions of unrepaired DNA lesions and impaired transcription have not been dissected yet. Here, we functionally characterize the consequence of a homozygous missense mutation in the general transcription factor II E, subunit 2 (GTF2E2/TFIIEß) of two unrelated non-photosensitive TTD (NPS-TTD) families. We demonstrate that mutant TFIIEß strongly reduces the total amount of the entire TFIIE complex, with a remarkable temperature-sensitive transcription defect, which strikingly correlates with the phenotypic aggravation of key clinical symptoms after episodes of high fever. We performed induced pluripotent stem (iPS) cell reprogramming of patient fibroblasts followed by in vitro erythroid differentiation to translate the intriguing molecular defect to phenotypic expression in relevant tissue, to disclose the molecular basis for some specific TTD features. We observed a clear hematopoietic defect during late-stage differentiation associated with hemoglobin subunit imbalance. These new findings of a DNA repair-independent transcription defect and tissue-specific malfunctioning provide novel mechanistic insight into the etiology of TTD.


Asunto(s)
Factores de Transcripción TFII/genética , Síndromes de Tricotiodistrofia/genética , Diferenciación Celular/genética , Reprogramación Celular/genética , ADN Helicasas/genética , Reparación del ADN , Femenino , Humanos , Células Madre Pluripotentes Inducidas/patología , Masculino , Mutación , Mutación Missense , Especificidad de Órganos , Linaje , Factores de Transcripción TFII/metabolismo , Transcripción Genética , Síndromes de Tricotiodistrofia/metabolismo , Síndromes de Tricotiodistrofia/patología
14.
BMC Med Genet ; 19(1): 7, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29325523

RESUMEN

BACKGROUND: Fanconi anemia (FA) is an inherited genomic instability disorder with congenital and developmental abnormalities, bone marrow failure and predisposition to cancer early in life, and cellular sensitivity to DNA interstrand crosslinks. CASE PRESENTATION: A fifty-one-year old female patient, initially diagnosed with FA in childhood on the basis of classic features and increased chromosomal breakage, and remarkable sun-sensitivity is described. She only ever had mild haematological abnormalities and no history of malignancy. To identify and characterise the genetic defect in this lady, who is one of the oldest reported FA patients, we used whole-exome sequencing for identification of causative mutations, and functionally characterized the cellular phenotype. Detection of the novel splice site mutation c.793-2A > G and the previously described missense mutation c.1765C > T (p.Arg589Trp) in XPF/ERCC4/FANCQ assign her as the third individual of complementation group FA-Q. Ectopic expression of wildtype, but not mutant, XPF/ERCC4/FANCQ, in patient-derived fibroblasts rescued cellular resistance to DNA interstrand-crosslinking agents. Patient derived FA-Q cells showed impaired nuclear excision repair capacity. However, mutated XPF/ERCC4/FANCQ protein in our patient's cells, as in the two other patients with FA-Q, was detectable on chromatin, in contrast to XP-F cells, where missense-mutant protein failed to properly translocate to the nucleus. CONCLUSIONS: Patients with FA characteristics and UV sensitivity should be tested for mutations in XPF/ERCC4/FANCQ. The missense mutation p.Arg589Trp was previously detected in patients diagnosed with Xeroderma pigmentosum or Cockayne syndrome. Hence, phenotypic manifestations associated with this XPF/ERCC4/ FANCQ mutation are highly variable.


Asunto(s)
Proteínas de Unión al ADN/genética , Anemia de Fanconi/genética , Mutación Missense , Trastornos por Fotosensibilidad/genética , Secuencia de Aminoácidos , Línea Celular , Línea Celular Tumoral , Daño del ADN , Reparación del ADN , Anemia de Fanconi/diagnóstico , Femenino , Fibroblastos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Persona de Mediana Edad , Trastornos por Fotosensibilidad/diagnóstico , Sistema Solar
15.
PLoS Genet ; 9(4): e1003431, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23637614

RESUMEN

The ten-subunit transcription factor IIH (TFIIH) plays a crucial role in transcription and nucleotide excision repair (NER). Inactivating mutations in the smallest 8-kDa TFB5/TTDA subunit cause the neurodevelopmental progeroid repair syndrome trichothiodystrophy A (TTD-A). Previous studies have shown that TTDA is the only TFIIH subunit that appears not to be essential for NER, transcription, or viability. We studied the consequences of TTDA inactivation by generating a Ttda knock-out (Ttda(-/-) ) mouse-model resembling TTD-A patients. Unexpectedly, Ttda(-/-) mice were embryonic lethal. However, in contrast to full disruption of all other TFIIH subunits, viability of Ttda(-/-) cells was not affected. Surprisingly, Ttda(-/-) cells were completely NER deficient, contrary to the incomplete NER deficiency of TTD-A patient-derived cells. We further showed that TTD-A patient mutations only partially inactivate TTDA function, explaining the relatively mild repair phenotype of TTD-A cells. Moreover, Ttda(-/-) cells were also highly sensitive to oxidizing agents. These findings reveal an essential role of TTDA for life, nucleotide excision repair, and oxidative DNA damage repair and identify Ttda(-/-) cells as a unique class of TFIIH mutants.


Asunto(s)
Reparación del ADN , Síndromes de Tricotiodistrofia , Animales , Síndrome de Cockayne , Humanos , Mutación , Factor de Transcripción TFIIH/genética , Factores de Transcripción/genética , Transcripción Genética , Síndromes de Tricotiodistrofia/genética
16.
Hum Mol Genet ; 22(14): 2881-93, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23562818

RESUMEN

The basal transcription/repair factor II H (TFIIH), found mutated in cancer-prone or premature aging diseases, plays a still unclear role in RNA polymerase I transcription. Furthermore, the impact of this function on TFIIH-related diseases, such as trichothiodystrophy (TTD), remains to be explored. Here, we studied the involvement of TFIIH during the whole process of ribosome biogenesis, from RNAP1 transcription to maturation steps of the ribosomal RNAs. Our results show that TFIIH is recruited to the ribosomal DNA in an active transcription-dependent manner and functions in RNAP1 transcription elongation through ATP hydrolysis of the XPB subunit. Remarkably, we found a TFIIH allele-specific effect, affecting RNAP1 transcription and/or the pre-rRNA maturation process. Interestingly, this effect was observed in mutant TFIIH-TTD cells and also in the brains of TFIIH-TTD mice. Our findings provide evidence that defective ribosome synthesis represents a new faulty mechanism involved in the pathophysiology of TFIIH-related diseases.


Asunto(s)
Mutación , ARN Ribosómico/genética , Factor de Transcripción TFIIH/genética , Síndromes de Tricotiodistrofia/genética , Animales , Humanos , Ratones , Ratones Noqueados , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Factor de Transcripción TFIIH/metabolismo , Transcripción Genética , Síndromes de Tricotiodistrofia/metabolismo
17.
Exp Cell Res ; 329(1): 61-8, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25016283

RESUMEN

Nucleotide excision repair (NER) is a highly versatile DNA repair process which is able to remove a broad spectrum of structurally unrelated DNA helix-destabilizing lesions. The multi-subunit transcription/repair factor IIH (TFIIH) is an important decision maker in NER, by opening the DNA double helix after the initial damage recognition and subsequently verifying the lesion. Inherited mutations in TFIIH subunits are associated with NER-deficiency and a perplexing clinical heterogeneity, ranging from cancer-prone Xeroderma Pigmentosum to the progeroid diseases Cockayne Syndrome and Trichothiodystrophy (TTD). Three different TFIIH coding genes are implicated in TTD: XPD, XPB and TTDA. The latter gene encodes for a small (71 amino-acid) subunit and appeared important for the stabilization of the entire TFIIH complex. Based on analyzing TTD group A patient derived cells it was initially thought that TTDA has only a NER-stimulating role. In this review we summarize recent data showing that full disruption of TTDA expression in a knock-out mouse-model completely inactivates NER. Surprisingly, next to being essential for NER, TTDA appeared to be required also for embryonic development, indicative for the big impact this small protein has on basal biological processes.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , Factores de Transcripción/genética , Síndromes de Tricotiodistrofia/genética , Animales , Humanos , Ratones
18.
Nucleic Acids Res ; 40(18): 9044-59, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22810208

RESUMEN

The structure specific flap endonuclease 1 (FEN1) plays an essential role in long-patch base excision repair (BER) and in DNA replication. We have generated a fluorescently tagged FEN1 expressing mouse which allows monitoring the localization and kinetics of FEN1 in response to DNA damage in living cells and tissues. The expression of FEN1, which is tagged at its C-terminal end with enhanced yellow fluorescent protein (FEN1-YFP), is under control of the endogenous Fen1 transcriptional regulatory elements. In line with its role in processing of Okazaki fragments during DNA replication, we found that FEN1-YFP expression is mainly observed in highly proliferating tissue. Moreover, the FEN1-YFP fusion protein allowed us to investigate repair kinetics in cells challenged with local and global DNA damage. In vivo multi-photon fluorescence microscopy demonstrates rapid localization of FEN1 to local laser-induced DNA damage sites in nuclei, providing evidence of a highly mobile protein that accumulates fast at DNA lesion sites with high turnover rate. Inhibition of poly (ADP-ribose) polymerase 1 (PARP1) disrupts FEN1 accumulation at sites of DNA damage, indicating that PARP1 is required for FEN1 recruitment to DNA repair intermediates in BER.


Asunto(s)
Reparación del ADN , Endonucleasas de ADN Solapado/metabolismo , Animales , Proteínas Bacterianas/genética , Encéfalo/metabolismo , Células Cultivadas , Daño del ADN , Endonucleasas de ADN Solapado/análisis , Endonucleasas de ADN Solapado/genética , Técnicas de Sustitución del Gen , Cinética , Proteínas Luminiscentes/genética , Ratones , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Antígeno Nuclear de Célula en Proliferación/análisis , Fase S
19.
Nat Commun ; 15(1): 3490, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664429

RESUMEN

Congenital nucleotide excision repair (NER) deficiency gives rise to several cancer-prone and/or progeroid disorders. It is not understood how defects in the same DNA repair pathway cause different disease features and severity. Here, we show that the absence of functional ERCC1-XPF or XPG endonucleases leads to stable and prolonged binding of the transcription/DNA repair factor TFIIH to DNA damage, which correlates with disease severity and induces senescence features in human cells. In vivo, in C. elegans, this prolonged TFIIH binding to non-excised DNA damage causes developmental arrest and neuronal dysfunction, in a manner dependent on transcription-coupled NER. NER factors XPA and TTDA both promote stable TFIIH DNA binding and their depletion therefore suppresses these severe phenotypical consequences. These results identify stalled NER intermediates as pathogenic to cell functionality and organismal development, which can in part explain why mutations in XPF or XPG cause different disease features than mutations in XPA or TTDA.


Asunto(s)
Caenorhabditis elegans , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN , Endonucleasas , Factor de Transcripción TFIIH , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Humanos , Animales , Factor de Transcripción TFIIH/metabolismo , Factor de Transcripción TFIIH/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Endonucleasas/metabolismo , Endonucleasas/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Unión Proteica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Mutación , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
20.
PLoS Genet ; 6(3): e1000871, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20221251

RESUMEN

Xeroderma pigmentosum (XP) is caused by defects in the nucleotide excision repair (NER) pathway. NER removes helix-distorting DNA lesions, such as UV-induced photodimers, from the genome. Patients suffering from XP exhibit exquisite sun sensitivity, high incidence of skin cancer, and in some cases neurodegeneration. The severity of XP varies tremendously depending upon which NER gene is mutated and how severely the mutation affects DNA repair capacity. XPF-ERCC1 is a structure-specific endonuclease essential for incising the damaged strand of DNA in NER. Missense mutations in XPF can result not only in XP, but also XPF-ERCC1 (XFE) progeroid syndrome, a disease of accelerated aging. In an attempt to determine how mutations in XPF can lead to such diverse symptoms, the effects of a progeria-causing mutation (XPF(R153P)) were compared to an XP-causing mutation (XPF(R799W)) in vitro and in vivo. Recombinant XPF harboring either mutation was purified in a complex with ERCC1 and tested for its ability to incise a stem-loop structure in vitro. Both mutant complexes nicked the substrate indicating that neither mutation obviates catalytic activity of the nuclease. Surprisingly, differential immunostaining and fractionation of cells from an XFE progeroid patient revealed that XPF-ERCC1 is abundant in the cytoplasm. This was confirmed by fluorescent detection of XPF(R153P)-YFP expressed in Xpf mutant cells. In addition, microinjection of XPF(R153P)-ERCC1 into the nucleus of XPF-deficient human cells restored nucleotide excision repair of UV-induced DNA damage. Intriguingly, in all XPF mutant cell lines examined, XPF-ERCC1 was detected in the cytoplasm of a fraction of cells. This demonstrates that at least part of the DNA repair defect and symptoms associated with mutations in XPF are due to mislocalization of XPF-ERCC1 into the cytoplasm of cells, likely due to protein misfolding. Analysis of these patient cells therefore reveals a novel mechanism to potentially regulate a cell's capacity for DNA repair: by manipulating nuclear localization of XPF-ERCC1.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Xerodermia Pigmentosa/enzimología , Sustitución de Aminoácidos/genética , Animales , Células CHO , Supervivencia Celular , Cricetinae , Cricetulus , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Técnica del Anticuerpo Fluorescente , Humanos , Mutación/genética , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA