Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO Rep ; 22(8): e52905, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34190393

RESUMEN

Planarians are able to stand long periods of starvation by maintaining adult stem cell pools and regenerative capacity. The molecular pathways that are needed for the maintenance of regeneration during starvation are not known. Here, we show that down-regulation of chaperonin TRiC/CCT subunits abrogates the regeneration capacity of planarians during starvation, but TRiC/CCT subunits are dispensable for regeneration in fed planarians. Under starvation, they are required to maintain mitotic fidelity and for blastema formation. We show that TRiC subunits modulate the unfolded protein response (UPR) and are required to maintain ATP levels in starved planarians. Regenerative defects in starved CCT-depleted planarians can be rescued by either chemical induction of mild endoplasmic reticulum stress, which leads to induction of the UPR, or by the supplementation of fatty acids. Together, these results indicate that CCT-dependent UPR induction promotes regeneration of planarians under food restriction.


Asunto(s)
Planarias , Animales , Chaperonina con TCP-1 , Regulación hacia Abajo , Planarias/genética , Respuesta de Proteína Desplegada
2.
Semin Cell Dev Biol ; 87: 169-181, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29705301

RESUMEN

All living forms, prokaryotes as eukaryotes, have some means of adaptation to food scarcity, which extends the survival chances under extreme environmental conditions. Nowadays we know that dietary interventions, including fasting, extends lifespan of many organisms and can also protect against age-related diseases including in humans. Therefore, the capacity of adapting to periods of food scarcity may have evolved billions of years ago not only to allow immediate organismal survival but also to be able to extend organismal lifespan or at least to lead to a healthier remaining lifespan. Planarians have been the center of attention since more than two centuries because of their astonishing power of full body regeneration that relies on a large amount of adult stem cells or neoblasts. However, they also present an often-overlooked characteristic. They are able to stand long time starvation. Planarians have adapted to periods of fasting by shrinking or degrowing. Here we will review the published data about starvation in planarians and conclude with the possibility of starvation being one of the processes that rejuvenate the planarian, thus explaining the historical notion of non-ageing planarians.


Asunto(s)
Privación de Alimentos/fisiología , Planarias/metabolismo , Animales , Ayuno , Humanos , Planarias/citología , Regeneración , Rejuvenecimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA