Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 163(4): 894-906, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26544938

RESUMEN

A deficiency in pejvakin, a protein of unknown function, causes a strikingly heterogeneous form of human deafness. Pejvakin-deficient (Pjvk(-/-)) mice also exhibit variable auditory phenotypes. Correlation between their hearing thresholds and the number of pups per cage suggest a possible harmful effect of pup vocalizations. Direct sound or electrical stimulation show that the cochlear sensory hair cells and auditory pathway neurons of Pjvk(-/-) mice and patients are exceptionally vulnerable to sound. Subcellular analysis revealed that pejvakin is associated with peroxisomes and required for their oxidative-stress-induced proliferation. Pjvk(-/-) cochleas display features of marked oxidative stress and impaired antioxidant defenses, and peroxisomes in Pjvk(-/-) hair cells show structural abnormalities after the onset of hearing. Noise exposure rapidly upregulates Pjvk cochlear transcription in wild-type mice and triggers peroxisome proliferation in hair cells and primary auditory neurons. Our results reveal that the antioxidant activity of peroxisomes protects the auditory system against noise-induced damage.


Asunto(s)
Pérdida Auditiva Provocada por Ruido/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Peroxisomas/metabolismo , Proteínas/metabolismo , Animales , Vías Auditivas , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Pérdida Auditiva Provocada por Ruido/patología , Humanos , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Estrés Oxidativo , Proteínas/genética
2.
Proc Natl Acad Sci U S A ; 120(31): e2216127120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487091

RESUMEN

Retroviruses and their host have coevolved in a delicate balance between viral replication and survival of the infected cell. In this equilibrium, restriction factors expressed by infected cells control different steps of retroviral replication such as entry, uncoating, nuclear import, expression, or budding. Here, we describe a mechanism of restriction against human T cell leukemia virus type 1 (HTLV-1) by the helicase-like transcription factor (HLTF). We show that RNA and protein levels of HLTF are reduced in primary T cells of HTLV-1-infected subjects, suggesting a clinical relevance. We further demonstrate that the viral oncogene Tax represses HLTF transcription via the Enhancer of zeste homolog 2 methyltransferase of the Polycomb repressive complex 2. The Tax protein also directly interacts with HLTF and induces its proteasomal degradation. RNA interference and gene transduction in HTLV-1-infected T cells derived from patients indicate that HLTF is a restriction factor. Restoring the normal levels of HLTF expression induces the dispersal of the Golgi apparatus and overproduction of secretory granules. By synergizing with Tax-mediated NF-κB activation, physiologically relevant levels of HLTF intensify the autophagic flux. Increased vesicular trafficking leads to an enlargement of the lysosomes and the production of large vacuoles containing viral particles. HLTF induction in HTLV-1-infected cells significantly increases the percentage of defective virions. In conclusion, HLTF-mediated activation of the autophagic flux blunts the infectious replication cycle of HTLV-1, revealing an original mode of viral restriction.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Leucemia de Células T , Humanos , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Productos del Gen tax/genética , Productos del Gen tax/metabolismo , Linfocitos T/metabolismo , FN-kappa B/metabolismo , Proteínas de Unión al ADN
3.
EMBO J ; 39(16): e103373, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32627867

RESUMEN

TMF1-regulated nuclear protein 1 (Trnp1) has been shown to exert potent roles in neural development affecting neural stem cell self-renewal and brain folding, but its molecular function in the nucleus is still unknown. Here, we show that Trnp1 is a low complexity protein with the capacity to phase separate. Trnp1 interacts with factors located in several nuclear membrane-less organelles, the nucleolus, nuclear speckles, and condensed chromatin. Importantly, Trnp1 co-regulates the architecture and function of these nuclear compartments in vitro and in the developing brain in vivo. Deletion of a highly conserved region in the N-terminal intrinsic disordered region abolishes the capacity of Trnp1 to regulate nucleoli and heterochromatin size, proliferation, and M-phase length; decreases the capacity to phase separate; and abrogates most of Trnp1 protein interactions. Thus, we identified Trnp1 as a novel regulator of several nuclear membrane-less compartments, a function important to maintain cells in a self-renewing proliferative state.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , División Celular , Proteínas de Unión al ADN/metabolismo , Células-Madre Neurales/metabolismo , Membrana Nuclear/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Femenino , Ratones , Membrana Nuclear/genética , Dominios Proteicos
4.
Cell Commun Signal ; 22(1): 133, 2024 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368370

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma is an aggressive cancer type with one of the lowest survival rates due to late diagnosis and the absence of effective treatments. A better understanding of PDAC biology will help researchers to discover the Achilles' heel of cancer cells. In that regard, our research team investigated the function of an emerging oncoprotein known as myoferlin. Myoferlin is overexpressed in PDAC and its silencing/targeting has been shown to affect cancer cell proliferation, migration, mitochondrial dynamics and metabolism. Nevertheless, our comprehension of myoferlin functions in cells remains limited. In this study, we aimed to understand the molecular mechanism linking myoferlin silencing to mitochondrial dynamics. METHODS: Experiments were performed on two pancreas cancer cell lines, Panc-1 and MiaPaCa-2. Myoferlin localization on mitochondria was evaluated by immunofluorescence, proximity ligation assay, and cell fractionation. The presence of myoferlin in mitochondria-associated membranes was assessed by cell fractionation and its function in mitochondrial calcium transfer was evaluated using calcium flow experiments, proximity ligation assays, co-immunoprecipitation, and timelapse fluorescence microscopy in living cells. RESULTS: Myoferlin localization on mitochondria was investigated. Our results suggest that myoferlin is unlikely to be located on mitochondria. Instead, we identified myoferlin as a new component of mitochondria-associated membranes. Its silencing significantly reduces the mitochondrial calcium level upon stimulation, probably through myoferlin interaction with the inositol 1,4,5-triphosphate receptors 3. CONCLUSIONS: For the first time, myoferlin was specifically demonstrated to be located in mitochondria-associated membranes where it participates to calcium flow. We hypothesized that this function explains our previous results on mitochondrial dynamics. This study improves our comprehension of myoferlin localization and function in cancer biology.


Asunto(s)
Proteínas de Unión al Calcio , Neoplasias Pancreáticas , Humanos , Calcio/metabolismo , Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Línea Celular Tumoral , Proteínas de la Membrana/metabolismo , Membranas Asociadas a Mitocondrias , Neoplasias Pancreáticas/patología
5.
Dev Dyn ; 252(2): 239-246, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36106826

RESUMEN

In the cochlea, connexin 26 (Cx26) and connexin 30 (Cx30) co-assemble into two types of homomeric and heteromeric gap junctions between adjacent non-sensory epithelial cells. These channels provide a mechanical coupling between connected cells, and their activity is critical to maintain cochlear homeostasis. Many of the mutations in GJB2 or GJB6, which encode Cx26 and Cx30 in humans, impair the formation of membrane channels and cause autosomal syndromic and non-syndromic hearing loss. Thus, deciphering the connexin trafficking pathways in situ should represent a major step forward in understanding the pathogenic significance of many of these mutations. A growing body of evidence now suggests that Cx26/Cx30 heteromeric and Cx30 homomeric channels display distinct assembly mechanisms. Here, we review the most recent advances that have been made toward unraveling the biogenesis and stability of these gap junctions in the cochlea.


Asunto(s)
Conexinas , Sordera , Humanos , Conexinas/genética , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Cóclea/metabolismo , Conexina 30/genética , Conexina 30/metabolismo , Sordera/genética
6.
PLoS Pathog ; 17(9): e1009919, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34543356

RESUMEN

Viral infections are known to hijack the transcription and translation of the host cell. However, the extent to which viral proteins coordinate these perturbations remains unclear. Here we used a model system, the human T-cell leukemia virus type 1 (HTLV-1), and systematically analyzed the transcriptome and interactome of key effectors oncoviral proteins Tax and HBZ. We showed that Tax and HBZ target distinct but also common transcription factors. Unexpectedly, we also uncovered a large set of interactions with RNA-binding proteins, including the U2 auxiliary factor large subunit (U2AF2), a key cellular regulator of pre-mRNA splicing. We discovered that Tax and HBZ perturb the splicing landscape by altering cassette exons in opposing manners, with Tax inducing exon inclusion while HBZ induces exon exclusion. Among Tax- and HBZ-dependent splicing changes, we identify events that are also altered in Adult T cell leukemia/lymphoma (ATLL) samples from two independent patient cohorts, and in well-known cancer census genes. Our interactome mapping approach, applicable to other viral oncogenes, has identified spliceosome perturbation as a novel mechanism coordinated by Tax and HBZ to reprogram the transcriptome.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Productos del Gen tax/metabolismo , Infecciones por HTLV-I/metabolismo , Leucemia-Linfoma de Células T del Adulto/virología , Proteínas de los Retroviridae/metabolismo , Células HEK293 , Infecciones por HTLV-I/etiología , Virus Linfotrópico T Tipo 1 Humano , Humanos , Células Jurkat , Empalme del ARN , ARN Mensajero , Factor de Empalme U2AF/metabolismo
7.
Cell Tissue Res ; 393(1): 111-117, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37129618

RESUMEN

In vertebrate skeletal muscles, the architecture of myofibrils is particularly well conserved throughout the taxa. It is composed of suites of repeating functional units called sarcomeres which give the muscle its striated structure. Here, we show that the skeletal sound producing muscles of the cusk eel Parophidion vassali have a different organisation, distinct from the classical type found in textbooks. Within sarcomeres, filaments are not straight lines but have a Y-shaped structure. This looks like chicken wire, with one branch connecting to a branch from the myofibril above and the other connecting to a branch from the myofibril below. This organisation seems to be an adaptation to counteract a trade-off between the speed and force. The low ratio of myofibrils within cell muscles and the high volume of sarcoplasmic reticulum strongly suggest that these muscles are capable of fast contractions. In parallel, the Z-bands are quite wide about 30% of the sarcomere length. This extraordinary long Z-band could smooth out the tension variations found in high-speed muscle contraction, helping to produce sounds with low variabilities in the sound features. Simultaneously, the Y-shaped structure allows having more cross-bridges, increasing the force in this high-speed muscle.


Asunto(s)
Miofibrillas , Sarcómeros , Fibras Musculares Esqueléticas , Contracción Muscular , Músculo Esquelético
8.
Neuroendocrinology ; 113(12): 1248-1261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36257292

RESUMEN

INTRODUCTION: Hippocampal newborn neurons integrate into functional circuits where they play an important role in learning and memory. We previously showed that perinatal exposure to Aroclor 1254, a commercial mixture of polychlorinated biphenyls (PCBs) associated with alterations of cognitive function in children, disrupted the normal maturation of excitatory synapses in the dentate gyrus. We hypothesized that hippocampal immature neurons underlie some of the cognitive effects of PCBs. METHODS: We used newly generated neurons to examine the effects of PCBs in mice following maternal exposure. Newborn dentate granule cells were tagged with enhanced green fluorescent protein using a transgenic mouse line. The transcriptome of the newly generated granule cells was assessed using RNA sequencing. RESULTS: Gestational and lactational exposure to 6 mg/kg/day of Aroclor 1254 disrupted the mRNA expression of 1,308 genes in newborn granule cells. Genes involved in mitochondrial functions were highly enriched with 154 genes significantly increased in exposed compared to control mice. The upregulation of genes involved in oxidative phosphorylation was accompanied by signs of endoplasmic reticulum stress and an increase in lipid peroxidation, a marker of oxidative stress, in the subgranular zone of the dentate gyrus but not in mature granule cells in the granular zone. Aroclor 1254 exposure also disrupted the expression of synaptic genes. Using laser-captured subgranular and granular zones, this effect was restricted to the subgranular zone, where newborn neurons are located. CONCLUSION: Our data suggest that gene expression in newborn granule cells is disrupted by Aroclor 1254 and provide clues to the effects of endocrine-disrupting chemicals on the brain.


Asunto(s)
Bifenilos Policlorados , Humanos , Femenino , Embarazo , Niño , Ratones , Animales , Bifenilos Policlorados/farmacología , Hipocampo , Neuronas/fisiología , Ratones Transgénicos , Encéfalo , Estrés Oxidativo , Expresión Génica , Giro Dentado , Neurogénesis
9.
Cell Struct Funct ; 46(1): 11-20, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33473065

RESUMEN

The development of hearing in mammals requires the formation and maturation of a highly organized and specialized epithelium known as the organ of Corti. This epithelium contains two types of cells, the sensory cells, which are the true receptors of auditory information, and the surrounding supporting cells, which are composed of a highly developed cytoskeleton essential to the architecture of the mature organ of Corti. The supporting cells are the only mammalian cells reported to contain the unusual 15-protofilament microtubules. In this paper, we show that 15-protofilament microtubules appear between the second and fourth day after birth in the pillar cells of the organ of Corti in mice. We also show that contrary to what has been described in the nematode worm Caenorhabiditis. elegans, microtubule acetylation is not essential for the formation of 15-protofilament microtubules in mice but is required for fine-tuning of their diameter.Key words: Acetylation, cytoskeleton, microtubule, inner ear, supporting cells.


Asunto(s)
Tubulina (Proteína) , Acetilación , Animales , Ratones , Microtúbulos/metabolismo , Órgano Espiral/metabolismo
10.
New Phytol ; 232(4): 1603-1617, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34392544

RESUMEN

The coupling between mitochondrial respiration and photosynthesis plays an important role in the energetic physiology of green plants and some secondary-red photosynthetic eukaryotes (diatoms), allowing an efficient CO2 assimilation and optimal growth. Using the flagellate Euglena gracilis, we first tested if photosynthesis-respiration coupling occurs in this species harbouring secondary green plastids (i.e. originated from an endosymbiosis between a green alga and a phagotrophic euglenozoan). Second, we tested how the trophic state (mixotrophy and photoautotrophy) of the cell alters the mechanisms involved in the photosynthesis-respiration coupling. Energetic coupling between photosynthesis and respiration was determined by testing the effect of respiratory inhibitors on photosynthesis, and measuring the simultaneous variation of photosynthesis and respiration rates as a function of temperature (i.e. thermal response curves). The mechanism involved in the photosynthesis-respiration coupling was assessed by combining proteomics, biophysical and cytological analyses. Our work shows that there is photosynthesis-respiration coupling and membrane contacts between mitochondria and chloroplasts in E. gracilis. However, whereas in mixotrophy adjustment of the chloroplast ATP/NADPH ratio drives the interaction, in photoautotrophy the coupling is conditioned by CO2 limitation and photorespiration. This indicates that maintenance of photosynthesis-respiration coupling, through plastic metabolic responses, is key to E. gracilis functioning under changing environmental conditions.


Asunto(s)
Euglena gracilis , Fotosíntesis , Dióxido de Carbono , Cloroplastos , Euglena gracilis/fisiología , Plastidios
11.
J Anat ; 238(4): 956-969, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33150619

RESUMEN

The ability to produce sounds has been reported in various Ostraciidae but not deeply studied. In some Ostracion species, two different sound-producing muscles allow these boxfishes to produce two different kinds of sounds in a sequence. This study investigates sound production in another Indo-Pacific species, the longhorn cowfish Lactoria cornuta that also possesses two pairs of sonic muscles associated with the swim bladder: extrinsic sonic muscles (ESMs) and intrinsic sonic muscles (ISMs). The cowfish produces two kinds of sounds called hums and clicks. Hums are made of trains of low amplitude pulses that last for long periods of time, suggesting that they are produced by fatigue-resistant muscles, whereas clicks correspond to shorter sounds with greater amplitude than the hums, suggesting that they result from more powerful contractions. Ultra-structural differences are found between extrinsic and intrinsic sonic muscles. According to features such as long sarcomeres, long I-bands, a high number of mitochondria, and a proliferation of sarcoplasmic reticulum (SR), ESMs would be able to produce fast, strong, and short contractions corresponding to clicks (the shortest sounds with the greatest amplitude). ISMs have the thinnest cells, the smallest number of myofilaments that have long I-bands, the highest volume of mitochondria, and well-developed SR supporting these muscles; these features should generate fast and prolonged contractions that could correspond to the hums that can be produced over long periods of time. A concluding figure shows clear comparisons of the different fibers that were studied in L. cornuta. This study also compared the call features of each sound with the cowfish's hearing ability and supports L. cornuta was more sensitive to frequencies ranging between at least 100 and 400 Hz with thresholds of 128-143 dB re 1 µPa over this range, meaning that they are sensitive to the frequencies produced by conspecifics.


Asunto(s)
Músculos/fisiología , Tetraodontiformes/fisiología , Vocalización Animal , Animales , Audición , Músculos/ultraestructura , Tetraodontiformes/anatomía & histología
12.
EMBO Rep ; 20(9): e47097, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31321879

RESUMEN

Protein homeostasis is essential to cell function, and a compromised ability to reduce the load of misfolded and aggregated proteins is linked to numerous age-related diseases, including hearing loss. Here, we show that altered proteostasis consequent to Elongator complex deficiency also impacts the proper development of the cochlea and results in deafness. In the absence of the catalytic subunit Elp3, differentiating spiral ganglion neurons display large aggresome-like structures and undergo apoptosis before birth. The cochlear mechanosensory cells are able to survive proteostasis disruption but suffer defects in polarity and stereociliary bundle morphogenesis. We demonstrate that protein aggregates accumulate at the apical surface of hair cells, where they cause a local slowdown of microtubular trafficking, altering the distribution of intrinsic polarity proteins and affecting kinocilium position and length. Alleviation of protein misfolding using the chemical chaperone 4-phenylbutyric acid during embryonic development ameliorates hair cell polarity in Elp3-deficient animals. Our study highlights the importance of developmental proteostasis in the cochlea and unveils an unexpected link between proteome integrity and polarized organization of cellular components.


Asunto(s)
Cóclea/citología , Cóclea/metabolismo , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/fisiología , Proteostasis/fisiología , Polaridad Celular/genética , Polaridad Celular/fisiología , Técnica del Anticuerpo Fluorescente , Células HEK293 , Células Ciliadas Auditivas/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Humanos , Hibridación in Situ , Microscopía Confocal , Microscopía Electrónica de Rastreo , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Pliegue de Proteína , Proteostasis/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
13.
Int J Mol Sci ; 22(3)2021 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-33498839

RESUMEN

Unlike in most eukaryotic cells, the genetic information of budding yeast in the exponential growth phase is only present in the form of decondensed chromatin, a configuration that does not allow its visualization in cell nuclei conventionally prepared for transmission electron microscopy. In this work, we studied the distribution of chromatin and its relationships to the nucleolus using different cytochemical and immunocytological approaches applied to yeast cells subjected to hyperosmotic shock. Our results show that osmotic shock induces the formation of heterochromatin patches in the nucleoplasm and intranucleolar regions of the yeast nucleus. In the nucleolus, we further revealed the presence of osmotic shock-resistant DNA in the fibrillar cords which, in places, take on a pinnate appearance reminiscent of ribosomal genes in active transcription as observed after molecular spreading ("Christmas trees"). We also identified chromatin-associated granules whose size, composition and behaviour after osmotic shock are reminiscent of that of mammalian perichromatin granules. Altogether, these data reveal that it is possible to visualize heterochromatin in yeast and suggest that the yeast nucleus displays a less-effective compartmentalized organization than that of mammals.


Asunto(s)
Núcleo Celular/ultraestructura , Cromatina/ultraestructura , Presión Osmótica , Saccharomyces cerevisiae/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestructura , Núcleo Celular/metabolismo , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Heterocromatina , Histocitoquímica , Microscopía Electrónica de Transmisión , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura
14.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35008757

RESUMEN

The recruitment of pericytes and vascular smooth muscle cells (SMCs) that enwrap endothelial cells (ECs) is a crucial process for vascular maturation and stabilization. Communication between these two cell types is crucial during vascular development and in maintaining vessel homeostasis. Extracellular vesicles (EVs) have emerged as a new communication tool involving the exchange of microRNAs between cells. In the present study, we searched for microRNAs that could be transferred via EVs from ECs to SMCs and vice versa. Thanks to a microRNA profiling experiment, we found that two microRNAs are more exported in each cell type in coculture experiments: while miR-539 is more secreted by ECs, miR-582 is more present in EVs from SMCs. Functional assays revealed that both microRNAs can modulate both cell-type phenotypes. We further identified miR-539 and miR-582 targets, in agreement with their respective cell functions. The results obtained in vivo in the neovascularization model suggest that miR-539 and miR-582 might cooperate to trigger the process of blood vessel coverage by smooth muscle cells in a mature plexus. Taken together, these results are the first to highlight the role of miR-539 and miR-582 in angiogenesis and communication between ECs and SMCs.


Asunto(s)
Comunicación Celular , Vesículas Extracelulares/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Vasos Sanguíneos/metabolismo , Técnicas de Cocultivo , Vesículas Extracelulares/ultraestructura , Regulación de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Modelos Biológicos , Neovascularización Fisiológica/genética , Remodelación Vascular
15.
New Phytol ; 228(3): 855-868, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32535971

RESUMEN

Disentangling the metabolic functioning of corals' endosymbionts (Symbiodiniaceae) is relevant to understanding the response of coral reefs to warming oceans. In this work, we first question whether there is an energetic coupling between photosynthesis and respiration in Symbiodiniaceae (Symbiodinium, Durusdinium and Effrenium), and second, how different levels of energetic coupling will affect their adaptive responses to global warming. Coupling between photosynthesis and respiration was established by determining the variation of metabolic rates during thermal response curves, and how inhibition of respiration affects photosynthesis. Adaptive (irreversible) responses were studied by exposing two Symbiodinium species with different levels of photosynthesis-respiration interaction to high temperature conditions (32°C) for 1 yr. We found that some Symbiodiniaceae have a high level of energetic coupling; that is, photosynthesis and respiration have the same temperature dependency, and photosynthesis is negatively affected when respiration is inhibited. Conversely, photosynthesis and respiration are not coupled in other species. In any case, prolonged exposure to high temperature caused adjustments in both photosynthesis and respiration, but these changes were fully reversible. We conclude that energetic coupling between photosynthesis and respiration exhibits wide variation amongst Symbiodiniaceae and does not determine the occurrence of adaptive responses in Symbiodiniaceae to temperature increase.


Asunto(s)
Antozoos , Calentamiento Global , Animales , Océanos y Mares , Fotosíntesis , Respiración , Simbiosis , Temperatura
16.
J Struct Biol ; 208(2): 191-204, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31479756

RESUMEN

Upstream binding transcription factor (UBTF) is a co-regulator of RNA polymerase I by constituting an initiation complex on rRNA genes. UBTF plays a role in rDNA bending and its maintenance in "open" state. It exists as two splicing variants, UBTF1 and UBTF2, which cannot be discerned with antibodies raised against UBTF. We investigated the ultrastructural localization of each variant in cells synthesizing GFP-tagged UBTF1 or UBTF2 by using anti-GFP antibodies and pre-embedding nanogold strategy. Detailed 3D distribution of UBTF1 and 2 was also studied by electron tomography. In control cells, the two isoforms are very abundant within fibrillar centers, but their repartition strongly differs. Electron tomography shows that UBTF1 is disposed as fibrils that are folded in coils whereas UBTF2 is localized homogenously, preferentially at their cortical area. As UBTF is a useful marker to trace rDNA genes, we used these data to improve our previous model of 3D organization of active transcribing rDNA gene within fibrillar centers. Finally, when rRNA synthesis is inhibited during actinomycin D treatment or entry in mitosis, UBTF1 and UBTF2 show a similar distribution along extended 3D loop-like structures. Altogether these data suggest new roles for UBTF1 and UBTF2 isoforms in the organization of active and inactive rDNA genes.


Asunto(s)
Tomografía con Microscopio Electrónico/métodos , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Línea Celular , Humanos , Microscopía Fluorescente , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética
17.
J Struct Biol ; 208(3): 107398, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31585176

RESUMEN

The nucleolus is a multifunctional structure of the eukaryotic cell nucleus. However, its primary role is ribosome formation. Although the factors and mechanisms involved in ribogenesis are well conserved in eukaryotes, two types of nucleoli have been observed under the electron microscope: a tricompartmentalized nucleolus in amniotes and a bicompartmentalized nucleolus in other species. A recent study has also revealed that turtles, although belonging to amniotes, displayed a nucleolus with bipartite organization, suggesting that this reptile group may have carried out a reversion phenomenon during evolution. In this study, we examine in great detail the functional organization of the turtle nucleolus. In liver and spleen cells cultured in vitro, we confirm that the turtle nucleolus is mainly formed by two components: a fibrillar zone surrounded by a granular zone. We further show that the fibrillar zone includes densely-contrasted strands, which are positive after silver-stained Nucleolar Organizer Region (Ag-NOR) staining and DNA labelling. We also reveal that the dense strands condensed into a very compact mass within the fibrillar zone after a treatment with actinomycin D or 5,6-dichlorobenzimidazole riboside. Finally, by using pulse-chase experiments with BrUTP, three-dimensional image reconstructions of confocal optical sections, and electron microscopy analysis of ultrathin sections, we show that the topological and spatial dynamics of rRNA within the nucleolus extend from upstream binding factor (UBF)-positive sites in the fibrillar zone to the granular zone, without ever releasing the positive sites for the UBF. Together, these results seem to clearly indicate that the compartmentalization of the turtle nucleolus into two main components reflects a less orderly organization of ribosome formation.


Asunto(s)
Nucléolo Celular/genética , Nucléolo Celular/ultraestructura , Tortugas , Animales , Nucléolo Celular/efectos de los fármacos , Células Cultivadas , Dactinomicina/farmacología , Diclororribofuranosil Benzoimidazol/farmacología , Hígado/citología , Microscopía Confocal , Región Organizadora del Nucléolo , ARN Ribosómico/metabolismo , Bazo/citología
18.
J Cell Sci ; 130(9): 1570-1582, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28283545

RESUMEN

Genetic loss-of-function studies on development, cancer and somatic cell reprogramming have suggested that the group of macroH2A histone variants might function through stabilizing the differentiated state by a yet unknown mechanism. Here, we present results demonstrating that macroH2A variants have a major function in maintaining nuclear organization and heterochromatin architecture. Specifically, we find that a substantial amount of macroH2A is associated with heterochromatic repeat sequences. We further identify macroH2A on sites of interstitial heterochromatin decorated by histone H3 trimethylated on K9 (H3K9me3). Loss of macroH2A leads to major defects in nuclear organization, including reduced nuclear circularity, disruption of nucleoli and a global loss of dense heterochromatin. Domains formed by DNA repeat sequences are disorganized, expanded and fragmented, and mildly re-expressed when depleted of macroH2A. At the molecular level, we find that macroH2A is required for the interaction of repeat sequences with the nucleostructural protein lamin B1. Taken together, our results argue that a major function of macroH2A histone variants is to link nucleosome composition to higher-order chromatin architecture.


Asunto(s)
Heterocromatina/metabolismo , Histonas/metabolismo , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestructura , Células HEK293 , Células Hep G2 , Heterocromatina/ultraestructura , Humanos , Lamina Tipo B/metabolismo , Lisina/metabolismo , Masculino , Metilación , Unión Proteica
19.
Thorax ; 74(3): 309-312, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30244194

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing interstitial lung disease of unknown aetiology which leads rapidly to death. As diagnosis of IPF is complex, we aimed to characterise microRNA (miRNA) content of exosomes from sputum of patients with IPF. Using miRNA quantitative PCR array, we found a substantial dysregulation of sputum exosomal miRNA levels between patients with IPF and healthy subjects and identified a unique signature of three miRNAs. Interestingly, we found a negative correlation between miR-142-3p and diffusing capacity of the lungs for carbon monoxide/alveolar volume. This is the first characterisation of miRNA content of sputum-derived exosomes in IPF that identified promising biomarkers for diagnosis and disease severity.


Asunto(s)
Exosomas/metabolismo , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/metabolismo , MicroARNs/metabolismo , Esputo/metabolismo , Biomarcadores/metabolismo , Estudios de Casos y Controles , Femenino , Humanos , Fibrosis Pulmonar Idiopática/etiología , Masculino , Sensibilidad y Especificidad
20.
BMC Biotechnol ; 19(1): 81, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31752839

RESUMEN

BACKGROUND: Virus-like particle (VLP) platform represents a promising approach for the generation of efficient and immunogenic subunit vaccines. Here, the feasibility of using grapevine fanleaf virus (GFLV) VLPs as a new carrier for the presentation of human papillomavirus (HPV) L2 epitope was studied. To achieve this goal, a model of the HPV L2 epitope secondary structure was predicted and its insertion within 5 external loops in the GFLV capsid protein (CP) was evaluated. RESULTS: The epitope sequence was genetically inserted in the αB-αB" domain C of the GFLV CP, which was then over-expressed in Pichia pastoris and Escherichia coli. The highest expression yield was obtained in E. coli. Using this system, VLP formation requires a denaturation-refolding step, whereas VLPs with lower production yield were directly formed using P. pastoris, as confirmed by electron microscopy and immunostaining electron microscopy. Since the GFLV L2 VLPs were found to interact with the HPV L2 antibody under native conditions in capillary electrophoresis and in ELISA, it can be assumed that the inserted epitope is located at the VLP surface with its proper ternary structure. CONCLUSIONS: The results demonstrate that GFLV VLPs constitute a potential scaffold for surface display of the epitope of interest.


Asunto(s)
Proteínas de la Cápside/inmunología , Epítopos/inmunología , Ensayo de Inmunoadsorción Enzimática , Escherichia coli/virología , Humanos , Microscopía Electrónica , Nepovirus/inmunología , Nepovirus/patogenicidad , Papillomaviridae/inmunología , Papillomaviridae/patogenicidad , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA