RESUMEN
The Double Asteroid Redirection Test (DART) spacecraft successfully performed the first test of a kinetic impactor for asteroid deflection by impacting Dimorphos, the secondary of near-Earth binary asteroid (65803) Didymos, and changing the orbital period of Dimorphos. A change in orbital period of approximately 7 min was expected if the incident momentum from the DART spacecraft was directly transferred to the asteroid target in a perfectly inelastic collision1, but studies of the probable impact conditions and asteroid properties indicated that a considerable momentum enhancement (ß) was possible2,3. In the years before impact, we used lightcurve observations to accurately determine the pre-impact orbit parameters of Dimorphos with respect to Didymos4-6. Here we report the change in the orbital period of Dimorphos as a result of the DART kinetic impact to be -33.0 ± 1.0 (3σ) min. Using new Earth-based lightcurve and radar observations, two independent approaches determined identical values for the change in the orbital period. This large orbit period change suggests that ejecta contributed a substantial amount of momentum to the asteroid beyond what the DART spacecraft carried.
RESUMEN
Some active asteroids have been proposed to be formed as a result of impact events1. Because active asteroids are generally discovered by chance only after their tails have fully formed, the process of how impact ejecta evolve into a tail has, to our knowledge, not been directly observed. The Double Asteroid Redirection Test (DART) mission of NASA2, in addition to having successfully changed the orbital period of Dimorphos3, demonstrated the activation process of an asteroid resulting from an impact under precisely known conditions. Here we report the observations of the DART impact ejecta with the Hubble Space Telescope from impact time T + 15 min to T + 18.5 days at spatial resolutions of around 2.1 km per pixel. Our observations reveal the complex evolution of the ejecta, which are first dominated by the gravitational interaction between the Didymos binary system and the ejected dust and subsequently by solar radiation pressure. The lowest-speed ejecta dispersed through a sustained tail that had a consistent morphology with previously observed asteroid tails thought to be produced by an impact4,5. The evolution of the ejecta after the controlled impact experiment of DART thus provides a framework for understanding the fundamental mechanisms that act on asteroids disrupted by a natural impact1,6.
RESUMEN
Telescopic measurements of asteroids' colours rarely match laboratory reflectance spectra of meteorites owing to a 'space weathering' process that rapidly reddens asteroid surfaces in less than 10(6) years. 'Unweathered' asteroids (those having spectra matching the most commonly falling ordinary chondrite meteorites), however, are seen among small bodies the orbits of which cross inside Mars and the Earth. Various explanations have been proposed for the origin of these fresh surface colours, ranging from collisions to planetary encounters. Less reddened asteroids seem to cross most deeply into the terrestrial planet region, strengthening the evidence for the planetary-encounter theory, but encounter details within 10(6) years remain to be shown. Here we report that asteroids displaying unweathered spectra (so-called 'Q-types') have experienced orbital intersections closer than the Earth-Moon distance within the past 5 x 10(5) years. These Q-type asteroids are not currently found among asteroids showing no evidence of recent close planetary encounters. Our results substantiate previous work: tidal stress, strong enough to disturb and expose unweathered surface grains, is the most likely dominant short-term asteroid resurfacing process. Although the seismology details are yet to be worked out, the identification of rapid physical processes that can produce both fresh and weathered asteroid surfaces resolves the decades-long puzzle of the difference in colour of asteroids and meteorites.