Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.597
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(5): 957-974.e28, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36812912

RESUMEN

Bats are distinctive among mammals due to their ability to fly, use laryngeal echolocation, and tolerate viruses. However, there are currently no reliable cellular models for studying bat biology or their response to viral infections. Here, we created induced pluripotent stem cells (iPSCs) from two species of bats: the wild greater horseshoe bat (Rhinolophus ferrumequinum) and the greater mouse-eared bat (Myotis myotis). The iPSCs from both bat species showed similar characteristics and had a gene expression profile resembling that of cells attacked by viruses. They also had a high number of endogenous viral sequences, particularly retroviruses. These results suggest that bats have evolved mechanisms to tolerate a large load of viral sequences and may have a more intertwined relationship with viruses than previously thought. Further study of bat iPSCs and their differentiated progeny will provide insights into bat biology, virus host relationships, and the molecular basis of bats' special traits.


Asunto(s)
Quirópteros , Células Madre Pluripotentes , Virosis , Virus , Animales , Virus/genética , Transcriptoma , Filogenia
2.
Cell ; 181(7): 1566-1581.e27, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32531200

RESUMEN

The accurate timing and execution of organelle biogenesis is crucial for cell physiology. Centriole biogenesis is regulated by Polo-like kinase 4 (Plk4) and initiates in S-phase when a daughter centriole grows from the side of a pre-existing mother. Here, we show that a Plk4 oscillation at the base of the growing centriole initiates and times centriole biogenesis to ensure that centrioles grow at the right time and to the right size. The Plk4 oscillation is normally entrained to the cell-cycle oscillator but can run autonomously of it-potentially explaining why centrioles can duplicate independently of cell-cycle progression. Mathematical modeling indicates that the Plk4 oscillation can be generated by a time-delayed negative feedback loop in which Plk4 inactivates the interaction with its centriolar receptor through multiple rounds of phosphorylation. We hypothesize that similar organelle-specific oscillations could regulate the timing and execution of organelle biogenesis more generally.


Asunto(s)
Relojes Biológicos/fisiología , Centriolos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Biogénesis de Organelos , Fosforilación , Proteínas Serina-Treonina Quinasas/fisiología
3.
Cell ; 183(7): 1986-2002.e26, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33333022

RESUMEN

Serotonin plays a central role in cognition and is the target of most pharmaceuticals for psychiatric disorders. Existing drugs have limited efficacy; creation of improved versions will require better understanding of serotonergic circuitry, which has been hampered by our inability to monitor serotonin release and transport with high spatial and temporal resolution. We developed and applied a binding-pocket redesign strategy, guided by machine learning, to create a high-performance, soluble, fluorescent serotonin sensor (iSeroSnFR), enabling optical detection of millisecond-scale serotonin transients. We demonstrate that iSeroSnFR can be used to detect serotonin release in freely behaving mice during fear conditioning, social interaction, and sleep/wake transitions. We also developed a robust assay of serotonin transporter function and modulation by drugs. We expect that both machine-learning-guided binding-pocket redesign and iSeroSnFR will have broad utility for the development of other sensors and in vitro and in vivo serotonin detection, respectively.


Asunto(s)
Evolución Molecular Dirigida , Aprendizaje Automático , Serotonina/metabolismo , Algoritmos , Secuencia de Aminoácidos , Amígdala del Cerebelo/fisiología , Animales , Conducta Animal , Sitios de Unión , Encéfalo/metabolismo , Células HEK293 , Humanos , Cinética , Modelos Lineales , Ratones , Ratones Endogámicos C57BL , Fotones , Unión Proteica , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Sueño/fisiología , Vigilia/fisiología
4.
Nat Immunol ; 22(11): 1440-1451, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34686860

RESUMEN

Intestinal epithelial cell (IEC) damage by T cells contributes to graft-versus-host disease, inflammatory bowel disease and immune checkpoint blockade-mediated colitis. But little is known about the target cell-intrinsic features that affect disease severity. Here we identified disruption of oxidative phosphorylation and an increase in succinate levels in the IECs from several distinct in vivo models of T cell-mediated colitis. Metabolic flux studies, complemented by imaging and protein analyses, identified disruption of IEC-intrinsic succinate dehydrogenase A (SDHA), a component of mitochondrial complex II, in causing these metabolic alterations. The relevance of IEC-intrinsic SDHA in mediating disease severity was confirmed by complementary chemical and genetic experimental approaches and validated in human clinical samples. These data identify a critical role for the alteration of the IEC-specific mitochondrial complex II component SDHA in the regulation of the severity of T cell-mediated intestinal diseases.


Asunto(s)
Colitis/enzimología , Colon/enzimología , Citotoxicidad Inmunológica , Complejo II de Transporte de Electrones/metabolismo , Células Epiteliales/enzimología , Enfermedad Injerto contra Huésped/enzimología , Mucosa Intestinal/enzimología , Mitocondrias/enzimología , Linfocitos T/inmunología , Animales , Estudios de Casos y Controles , Comunicación Celular , Células Cultivadas , Colitis/genética , Colitis/inmunología , Colitis/patología , Colon/inmunología , Colon/ultraestructura , Modelos Animales de Enfermedad , Complejo II de Transporte de Electrones/genética , Células Epiteliales/inmunología , Células Epiteliales/ultraestructura , Femenino , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/patología , Humanos , Inmunidad Mucosa , Mucosa Intestinal/inmunología , Mucosa Intestinal/ultraestructura , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/inmunología , Mitocondrias/ultraestructura , Fosforilación Oxidativa , Ácido Succínico/metabolismo , Linfocitos T/metabolismo
5.
Cell ; 174(4): 803-817.e16, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30057114

RESUMEN

Acquired chromosomal DNA amplifications are features of many tumors. Although overexpression and stabilization of the histone H3 lysine 9/36 (H3K9/36) tri-demethylase KDM4A generates transient site-specific copy number gains (TSSGs), additional mechanisms directly controlling site-specific DNA copy gains are not well defined. In this study, we uncover a collection of H3K4-modifying chromatin regulators that function with H3K9 and H3K36 regulators to orchestrate TSSGs. Specifically, the H3K4 tri-demethylase KDM5A and specific COMPASS/KMT2 H3K4 methyltransferases modulate different TSSG loci through H3K4 methylation states and KDM4A recruitment. Furthermore, a distinct chromatin modifier network, MLL1-KDM4B-KDM5B, controls copy number regulation at a specific genomic locus in a KDM4A-independent manner. These pathways comprise an epigenetic addressing system for defining site-specific DNA rereplication and amplifications.


Asunto(s)
Cromatina/metabolismo , Variaciones en el Número de Copia de ADN , Metilación de ADN , Histonas/metabolismo , Lisina/metabolismo , Proteína 2 de Unión a Retinoblastoma/metabolismo , Ciclo Celular , Células HEK293 , Humanos , Proteína 2 de Unión a Retinoblastoma/genética
7.
Nature ; 626(8001): 1066-1072, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326610

RESUMEN

Animals can learn about sources of danger while minimizing their own risk by observing how others respond to threats. However, the distinct neural mechanisms by which threats are learned through social observation (known as observational fear learning1-4 (OFL)) to generate behavioural responses specific to such threats remain poorly understood. The dorsomedial prefrontal cortex (dmPFC) performs several key functions that may underlie OFL, including processing of social information and disambiguation of threat cues5-11. Here we show that dmPFC is recruited and required for OFL in mice. Using cellular-resolution microendoscopic calcium imaging, we demonstrate that dmPFC neurons code for observational fear and do so in a manner that is distinct from direct experience. We find that dmPFC neuronal activity predicts upcoming switches between freezing and moving state elicited by threat. By combining neuronal circuit mapping, calcium imaging, electrophysiological recordings and optogenetics, we show that dmPFC projections to the midbrain periaqueductal grey (PAG) constrain observer freezing, and that amygdalar and hippocampal inputs to dmPFC opposingly modulate observer freezing. Together our findings reveal that dmPFC neurons compute a distinct code for observational fear and coordinate long-range neural circuits to select behavioural responses.


Asunto(s)
Señales (Psicología) , Miedo , Vías Nerviosas , Corteza Prefrontal , Aprendizaje Social , Animales , Ratones , Amígdala del Cerebelo/fisiología , Calcio/metabolismo , Electrofisiología , Miedo/fisiología , Hipocampo/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Optogenética , Sustancia Gris Periacueductal/citología , Sustancia Gris Periacueductal/fisiología , Estimulación Luminosa , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Aprendizaje Social/fisiología , Reacción Cataléptica de Congelación/fisiología
8.
Cell ; 158(1): 54-68, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24995978

RESUMEN

Cells allocate substantial resources toward monitoring levels of nutrients that can be used for ATP generation by mitochondria. Among the many specialized cell types, neurons are particularly dependent on mitochondria due to their complex morphology and regional energy needs. Here, we report a molecular mechanism by which nutrient availability in the form of extracellular glucose and the enzyme O-GlcNAc Transferase (OGT), whose activity depends on glucose availability, regulates mitochondrial motility in neurons. Activation of OGT diminishes mitochondrial motility. We establish the mitochondrial motor-adaptor protein Milton as a required substrate for OGT to arrest mitochondrial motility by mapping and mutating the key O-GlcNAcylated serine residues. We find that the GlcNAcylation state of Milton is altered by extracellular glucose and that OGT alters mitochondrial motility in vivo. Our findings suggest that, by dynamically regulating Milton GlcNAcylation, OGT tailors mitochondrial dynamics in neurons based on nutrient availability.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Glucosa/metabolismo , Mitocondrias/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Animales , Axones/metabolismo , Proteínas Portadoras , Drosophila melanogaster , Técnicas de Silenciamiento del Gen , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas/genética , Ratas , Alineación de Secuencia
9.
Nature ; 621(7978): 324-329, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648851

RESUMEN

Marine heatwaves have been linked to negative ecological effects in recent decades1,2. If marine heatwaves regularly induce community reorganization and biomass collapses in fishes, the consequences could be catastrophic for ecosystems, fisheries and human communities3,4. However, the extent to which marine heatwaves have negative impacts on fish biomass or community composition, or even whether their effects can be distinguished from natural and sampling variability, remains unclear. We investigated the effects of 248 sea-bottom heatwaves from 1993 to 2019 on marine fishes by analysing 82,322 hauls (samples) from long-term scientific surveys of continental shelf ecosystems in North America and Europe spanning the subtropics to the Arctic. Here we show that the effects of marine heatwaves on fish biomass were often minimal and could not be distinguished from natural and sampling variability. Furthermore, marine heatwaves were not consistently associated with tropicalization (gain of warm-affiliated species) or deborealization (loss of cold-affiliated species) in these ecosystems. Although steep declines in biomass occasionally occurred after marine heatwaves, these were the exception, not the rule. Against the highly variable backdrop of ocean ecosystems, marine heatwaves have not driven biomass change or community turnover in fish communities that support many of the world's largest and most productive fisheries.


Asunto(s)
Biomasa , Calor Extremo , Peces , Animales , Europa (Continente) , Explotaciones Pesqueras/estadística & datos numéricos , Peces/clasificación , Peces/fisiología , Calor Extremo/efectos adversos , América del Norte , Biodiversidad
10.
Nature ; 615(7950): 134-142, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36470304

RESUMEN

Preventing SARS-CoV-2 infection by modulating viral host receptors, such as angiotensin-converting enzyme 2 (ACE2)1, could represent a new chemoprophylactic approach for COVID-19 that complements vaccination2,3. However, the mechanisms that control the expression of ACE2 remain unclear. Here we show that the farnesoid X receptor (FXR) is a direct regulator of ACE2 transcription in several tissues affected by COVID-19, including the gastrointestinal and respiratory systems. We then use the over-the-counter compound z-guggulsterone and the off-patent drug ursodeoxycholic acid (UDCA) to reduce FXR signalling and downregulate ACE2 in human lung, cholangiocyte and intestinal organoids and in the corresponding tissues in mice and hamsters. We show that the UDCA-mediated downregulation of ACE2 reduces susceptibility to SARS-CoV-2 infection in vitro, in vivo and in human lungs and livers perfused ex situ. Furthermore, we reveal that UDCA reduces the expression of ACE2 in the nasal epithelium in humans. Finally, we identify a correlation between UDCA treatment and positive clinical outcomes after SARS-CoV-2 infection using retrospective registry data, and confirm these findings in an independent validation cohort of recipients of liver transplants. In conclusion, we show that FXR has a role in controlling ACE2 expression and provide evidence that modulation of this pathway could be beneficial for reducing SARS-CoV-2 infection, paving the way for future clinical trials.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Receptores Virales , Ácido Ursodesoxicólico , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/prevención & control , Receptores Virales/genética , Receptores Virales/metabolismo , Estudios Retrospectivos , SARS-CoV-2/metabolismo , Tratamiento Farmacológico de COVID-19 , Cricetinae , Transcripción Genética , Ácido Ursodesoxicólico/farmacología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Organoides/efectos de los fármacos , Organoides/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Mucosa Nasal/efectos de los fármacos , Mucosa Nasal/metabolismo , Sistema de Registros , Reproducibilidad de los Resultados , Trasplante de Hígado
12.
Nature ; 603(7901): 427-433, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296847

RESUMEN

Plants cover a large fraction of the Earth's land mass despite most species having limited to no mobility. To transport their propagules, many plants have evolved mechanisms to disperse their seeds using the wind1-4. A dandelion seed, for example, has a bristly filament structure that decreases its terminal velocity and helps orient the seed as it wafts to the ground5. Inspired by this, we demonstrate wind dispersal of battery-free wireless sensing devices. Our millimetre-scale devices weigh 30 milligrams and are designed on a flexible substrate using programmable, off-the-shelf parts to enable scalability and flexibility for various sensing and computing applications. The system is powered using lightweight solar cells and an energy harvesting circuit that is robust to low and variable light conditions, and has a backscatter communication link that enables data transmission. To achieve the wide-area dispersal and upright landing that is necessary for solar power harvesting, we developed dandelion-inspired, thin-film porous structures that achieve a terminal velocity of 0.87 ± 0.02 metres per second and aerodynamic stability with a probability of upright landing of over 95%. Our results in outdoor environments demonstrate that these devices can travel 50-100 metres in gentle to moderate breeze. Finally, in natural systems, variance in individual seed morphology causes some seeds to fall closer and others to travel farther. We adopt a similar approach and show how we can modulate the porosity and diameter of the structures to achieve dispersal variation across devices.


Asunto(s)
Taraxacum , Viento , Porosidad , Semillas/anatomía & histología
13.
Nature ; 606(7912): 129-136, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35589843

RESUMEN

One of the most striking features of human cognition is the ability to plan. Two aspects of human planning stand out-its efficiency and flexibility. Efficiency is especially impressive because plans must often be made in complex environments, and yet people successfully plan solutions to many everyday problems despite having limited cognitive resources1-3. Standard accounts in psychology, economics and artificial intelligence have suggested that human planning succeeds because people have a complete representation of a task and then use heuristics to plan future actions in that representation4-11. However, this approach generally assumes that task representations are fixed. Here we propose that task representations can be controlled and that such control provides opportunities to quickly simplify problems and more easily reason about them. We propose a computational account of this simplification process and, in a series of preregistered behavioural experiments, show that it is subject to online cognitive control12-14 and that people optimally balance the complexity of a task representation and its utility for planning and acting. These results demonstrate how strategically perceiving and conceiving problems facilitates the effective use of limited cognitive resources.


Asunto(s)
Cognición , Función Ejecutiva , Eficiencia , Heurística , Humanos , Modelos Psicológicos
14.
Nature ; 612(7938): 116-122, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36289333

RESUMEN

Most animals have compound eyes, with tens to thousands of lenses attached rigidly to the exoskeleton. A natural assumption is that all of these species must resort to moving either their head or their body to actively change their visual input. However, classic anatomy has revealed that flies have muscles poised to move their retinas under the stable lenses of each compound eye1-3. Here we show that Drosophila use their retinal muscles to smoothly track visual motion, which helps to stabilize the retinal image, and also to perform small saccades when viewing a stationary scene. We show that when the retina moves, visual receptive fields shift accordingly, and that even the smallest retinal saccades activate visual neurons. Using a head-fixed behavioural paradigm, we find that Drosophila perform binocular, vergence movements of their retinas-which could enhance depth perception-when crossing gaps, and impairing the physiology of retinal motor neurons alters gap-crossing trajectories during free behaviour. That flies evolved an ability to actuate their retinas suggests that moving the eye independently of the head is broadly paramount for animals. The similarities of smooth and saccadic movements of the Drosophila retina and the vertebrate eye highlight a notable example of convergent evolution.


Asunto(s)
Drosophila , Movimientos Oculares , Músculos , Retina , Visión Ocular , Animales , Drosophila/fisiología , Movimientos Oculares/fisiología , Músculos/fisiología , Retina/fisiología , Movimientos Sacádicos/fisiología , Visión Ocular/fisiología , Visión Binocular , Percepción de Profundidad , Neuronas Motoras , Cabeza/fisiología , Drosophila melanogaster/fisiología , Evolución Biológica
15.
Nature ; 606(7912): 94-101, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650358

RESUMEN

Neurotransmitters play essential roles in regulating neural circuit dynamics both in the central nervous system as well as at the peripheral, including the gastrointestinal tract1-3. Their real-time monitoring will offer critical information for understanding neural function and diagnosing disease1-3. However, bioelectronic tools to monitor the dynamics of neurotransmitters in vivo, especially in the enteric nervous systems, are underdeveloped. This is mainly owing to the limited availability of biosensing tools that are capable of examining soft, complex and actively moving organs. Here we introduce a tissue-mimicking, stretchable, neurochemical biological interface termed NeuroString, which is prepared by laser patterning of a metal-complexed polyimide into an interconnected graphene/nanoparticle network embedded in an elastomer. NeuroString sensors allow chronic in vivo real-time, multichannel and multiplexed monoamine sensing in the brain of behaving mouse, as well as measuring serotonin dynamics in the gut without undesired stimulations and perturbing peristaltic movements. The described elastic and conformable biosensing interface has broad potential for studying the impact of neurotransmitters on gut microbes, brain-gut communication and may ultimately be extended to biomolecular sensing in other soft organs across the body.


Asunto(s)
Encéfalo , Sistema Nervioso Entérico , Tracto Gastrointestinal , Neurotransmisores , Animales , Técnicas Biosensibles , Encéfalo/metabolismo , Eje Cerebro-Intestino , Elastómeros , Sistema Nervioso Entérico/metabolismo , Tracto Gastrointestinal/inervación , Tracto Gastrointestinal/fisiología , Grafito , Rayos Láser , Ratones , Nanopartículas , Neurotransmisores/análisis , Serotonina/análisis
16.
Mol Cell ; 79(5): 705-707, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32888435

RESUMEN

In this issue of Molecular Cell, Benslimane et al. (2020) perform a CRISPR-Cas9 chemogenomic screen, identifying a network of DNA replication and genome integrity genes with the nutraceutical compound Resveratrol and its analog Pterostilbene, linking these compounds to the induction of DNA replication stress in mammalian cells.


Asunto(s)
Replicación del ADN , Resveratrol , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos
17.
N Engl J Med ; 390(17): 1584-1596, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38692292

RESUMEN

BACKGROUND: Congenital thrombotic thrombocytopenic purpura (TTP) results from severe hereditary deficiency of ADAMTS13. The efficacy and safety of recombinant ADAMTS13 and standard therapy (plasma-derived products) administered as routine prophylaxis or on-demand treatment in patients with congenital TTP is not known. METHODS: In this phase 3, open-label, crossover trial, we randomly assigned patients in a 1:1 ratio to two 6-month periods of prophylaxis with recombinant ADAMTS13 (40 IU per kilogram of body weight, administered intravenously) or standard therapy, followed by the alternate treatment; thereafter, all the patients received recombinant ADAMTS13 for an additional 6 months. The trigger for this interim analysis was trial completion by at least 30 patients. The primary outcome was acute TTP events. Manifestations of TTP, safety, and pharmacokinetics were assessed. Patients who had an acute TTP event could receive on-demand treatment. RESULTS: A total of 48 patients underwent randomization; 32 completed the trial. No acute TTP event occurred during prophylaxis with recombinant ADAMTS13, whereas 1 patient had an acute TTP event during prophylaxis with standard therapy (mean annualized event rate, 0.05). Thrombocytopenia was the most frequent TTP manifestation (annualized event rate, 0.74 with recombinant ADAMTS13 and 1.73 with standard therapy). Adverse events occurred in 71% of the patients with recombinant ADAMTS13 and in 84% with standard therapy. Adverse events that were considered by investigators to be related to the trial drug occurred in 9% of the patients with recombinant ADAMTS13 and in 48% with standard therapy. Trial-drug interruption or discontinuation due to adverse events occurred in no patients with recombinant ADAMTS13 and in 8 patients with standard therapy. No neutralizing antibodies developed during recombinant ADAMTS13 treatment. The mean maximum ADAMTS13 activity after recombinant ADAMTS13 treatment was 101%, as compared with 19% after standard therapy. CONCLUSIONS: During prophylaxis with recombinant ADAMTS13 in patients with congenital TTP, ADAMTS13 activity reached approximately 100% of normal levels, adverse events were generally mild or moderate in severity, and TTP events and manifestations were rare. (Funded by Takeda Development Center Americas and Baxalta Innovations; ClinicalTrials.gov number, NCT03393975.).


Asunto(s)
Proteína ADAMTS13 , Púrpura Trombocitopénica Trombótica , Proteínas Recombinantes , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Proteína ADAMTS13/administración & dosificación , Proteína ADAMTS13/efectos adversos , Proteína ADAMTS13/deficiencia , Proteína ADAMTS13/genética , Estudios Cruzados , Púrpura Trombocitopénica Trombótica/congénito , Púrpura Trombocitopénica Trombótica/tratamiento farmacológico , Púrpura Trombocitopénica Trombótica/genética , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/efectos adversos , Preescolar
18.
Annu Rev Microbiol ; 76: 757-782, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36075093

RESUMEN

Identified in the late nineteenth century as a single species residing on human skin, Malassezia is now recognized as a diverse genus comprising 18 species inhabiting not only skin but human gut, hospital environments, and even deep-sea sponges. All cultivated Malassezia species are lipid dependent, having lost genes for lipid synthesis and carbohydrate metabolism. The surging interest in Malassezia results from development of tools to improve sampling, culture, identification, and genetic engineering, which has led to findings implicating it in numerous skin diseases, Crohn disease, and pancreatic cancer. However, it has become clear that Malassezia plays a multifaceted role in human health, with mutualistic activity in atopic dermatitis and a preventive effect against other skin infections due to its potential to compete with skin pathogens such as Candida auris. Improved understanding of complex microbe-microbe and host-microbe interactions will be required to define Malassezia's role in human and animal health and disease so as to design targeted interventions.


Asunto(s)
Dermatitis Atópica , Malassezia , Animales , Humanos , Lípidos , Malassezia/genética , Piel , Simbiosis
19.
Nature ; 600(7889): 395-407, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34912083

RESUMEN

The ocean is warming, losing oxygen and being acidified, primarily as a result of anthropogenic carbon emissions. With ocean warming, acidification and deoxygenation projected to increase for decades, extreme events, such as marine heatwaves, will intensify, occur more often, persist for longer periods of time and extend over larger regions. Nevertheless, our understanding of oceanic extreme events that are associated with warming, low oxygen concentrations or high acidity, as well as their impacts on marine ecosystems, remains limited. Compound events-that is, multiple extreme events that occur simultaneously or in close sequence-are of particular concern, as their individual effects may interact synergistically. Here we assess patterns and trends in open ocean extremes based on the existing literature as well as global and regional model simulations. Furthermore, we discuss the potential impacts of individual and compound extremes on marine organisms and ecosystems. We propose a pathway to improve the understanding of extreme events and the capacity of marine life to respond to them. The conditions exhibited by present extreme events may be a harbinger of what may become normal in the future. As a consequence, pursuing this research effort may also help us to better understand the responses of marine organisms and ecosystems to future climate change.


Asunto(s)
Ácidos/análisis , Organismos Acuáticos , Modelos Climáticos , Ecosistema , Calentamiento Global/estadística & datos numéricos , Océanos y Mares , Oxígeno/análisis , Ácidos/química , Animales , Organismos Acuáticos/fisiología , Calor Extremo/efectos adversos , Cadena Alimentaria , Concentración de Iones de Hidrógeno , Oxígeno/química
20.
Nature ; 595(7866): 181-188, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34194044

RESUMEN

Computational social science is more than just large repositories of digital data and the computational methods needed to construct and analyse them. It also represents a convergence of different fields with different ways of thinking about and doing science. The goal of this Perspective is to provide some clarity around how these approaches differ from one another and to propose how they might be productively integrated. Towards this end we make two contributions. The first is a schema for thinking about research activities along two dimensions-the extent to which work is explanatory, focusing on identifying and estimating causal effects, and the degree of consideration given to testing predictions of outcomes-and how these two priorities can complement, rather than compete with, one another. Our second contribution is to advocate that computational social scientists devote more attention to combining prediction and explanation, which we call integrative modelling, and to outline some practical suggestions for realizing this goal.


Asunto(s)
Simulación por Computador , Ciencia de los Datos/métodos , Predicción/métodos , Modelos Teóricos , Ciencias Sociales/métodos , Objetivos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA