Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Appl Opt ; 60(15): C38-C46, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34143104

RESUMEN

Femtosecond laser electronic excitation tagging (FLEET) velocimetry was used in the boundary layer of an ogive-cylinder model in a Mach-6 Ludwieg tube. One-dimensional velocity profiles were extracted from the FLEET signal in laminar boundary layers from pure N2 flows at unit Reynolds numbers ranging from 3.4×106/m to3.9×106/m. The effects of model tip bluntness and the unit Reynolds number on the velocity profiles were investigated. The challenges and strategies of applying FLEET for direct boundary layer velocity measurement are discussed. The potential of utilizing FLEET velocimetry for understanding the dynamics of laminar and turbulent boundary layers in hypersonic flows is demonstrated.

2.
Appl Opt ; 56(31): 8797-8810, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29091695

RESUMEN

This work characterizes the state of the art in the analysis of high-repetition-rate, ultrafast combustion thermometry using chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering (CPP fs-CARS). Several key aspects of the CARS spectroscopy system are described, including: (1) the ultrafast laser source, (2) use of the frequency-doubled idler versus signal from the optical parametric amplifier, (3) the geometry constraints for phase matching, and (4) spectral fitting for single-shot temperature measurements. A frequency-dependent instrument response function (IRF) for the detection system was modeled as a variable-width Gaussian and implemented through a frequency convolution of synthetic spectra. Proper accounting of the IRF increased spectral fitting performance in the high-frequency region where signal oscillations are weaker and narrower. Aggregated data from 25 system performance assessments taken over four months yielded accuracy and precision of 2.7% and ±3.5% for flame temperatures, and 9.9% and ±6.1% at room temperature, using the commonly reported method. A new processing technique, based on the statistical method of maximum likelihood, was implemented for turbulent flames where strong fluctuations in expected temperatures necessitate use of multiple temperature calibrations. Results from multiple sets of laser parameters are combined to generate an error-weighted temperature from the top-performing calibrations. A testing procedure was designed to characterize system performance when the range of expected temperatures is unknown, simulating the random temperature field of a highly turbulent flame. Accuracy error of the CPP fs-CARS system increased in this more-stressing test at all temperatures, but precision was significantly affected only at room temperature. System stability is characterized, and the contribution from shot-to-shot laser fluctuations on measurement precision is quantified. Finally, the near-adiabatic and steady assumptions for the Hencken burner calibration flame are examined in an axial scan; significant deviations from ideal behavior were observed only at heights of more than four diameters above the burner surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA