Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hum Mol Genet ; 22(22): 4616-26, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23814041

RESUMEN

Mutants of neuroserpin are retained as polymers within the endoplasmic reticulum (ER) of neurones to cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. The cellular consequences are unusual in that the ordered polymers activate the ER overload response (EOR) in the absence of the canonical unfolded protein response. We use both cell lines and Drosophila models to show that the G392E mutant of neuroserpin that forms polymers is degraded by UBE2j1 E2 ligase and Hrd1 E3 ligase while truncated neuroserpin, a protein that lacks 132 amino acids, is degraded by UBE2g2 (E2) and gp78 (E3) ligases. The degradation of G392E neuroserpin results from SREBP-dependent activation of the cholesterol biosynthetic pathway in cells that express polymers of neuroserpin (G392E). Inhibition of HMGCoA reductase, the limiting enzyme of the cholesterol biosynthetic pathway, reduced the ubiquitination of G392E neuroserpin in our cell lines and increased the retention of neuroserpin polymers in both HeLa cells and primary neurones. Our data reveal a reciprocal relationship between cholesterol biosynthesis and the clearance of mutant neuroserpin. This represents the first description of a link between sterol metabolism and modulation of the proteotoxicity mediated by the EOR.


Asunto(s)
Colesterol/biosíntesis , Drosophila melanogaster/metabolismo , Epilepsias Mioclónicas/metabolismo , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Neuropéptidos/metabolismo , Polímeros/metabolismo , Serpinas/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/patología , Células HeLa , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/patología , Humanos , Ratones , Proteínas Mutantes/metabolismo , Neuronas/metabolismo , Neuropéptidos/genética , Desplegamiento Proteico , Serpinas/genética , Transducción de Señal , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Respuesta de Proteína Desplegada , Neuroserpina
2.
J Cell Sci ; 126(Pt 6): 1406-15, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23418347

RESUMEN

Phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) by the kinase GCN2 attenuates protein synthesis during amino acid starvation in yeast, whereas in mammals a family of related eIF2α kinases regulate translation in response to a variety of stresses. Unlike single-celled eukaryotes, mammals also possess two specific eIF2α phosphatases, PPP1R15a and PPP1R15b, whose combined deletion leads to a poorly understood early embryonic lethality. We report the characterisation of the first non-mammalian eIF2α phosphatase and the use of Drosophila to dissect its role during development. The Drosophila protein demonstrates features of both mammalian proteins, including limited sequence homology and association with the endoplasmic reticulum. Of note, although this protein is not transcriptionally regulated, its expression is controlled by the presence of upstream open reading frames in its 5'UTR, enabling induction in response to eIF2α phosphorylation. Moreover, we show that its expression is necessary for embryonic and larval development and that this is to oppose the inhibitory effects of GCN2 on anabolic growth.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 1/metabolismo , Regiones no Traducidas 5'/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Células COS , Chlorocebus aethiops , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/genética , Células HEK293 , Humanos , Datos de Secuencia Molecular , Fosforilación/genética , Proteínas Quinasas/genética , Proteína Fosfatasa 1/genética , Procesamiento Postranscripcional del ARN/genética , Homología de Secuencia de Aminoácido
3.
J Biol Chem ; 288(11): 7606-7617, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23341460

RESUMEN

Cell cycle checkpoints ensure that proliferation occurs only under permissive conditions, but their role in linking nutrient availability to cell division is incompletely understood. Protein folding within the endoplasmic reticulum (ER) is exquisitely sensitive to energy supply and amino acid sources because deficiencies impair luminal protein folding and consequently trigger ER stress signaling. Following ER stress, many cell types arrest within the G(1) phase, although recent studies have identified a novel ER stress G(2) checkpoint. Here, we report that ER stress affects cell cycle progression via two classes of signal: an early inhibition of protein synthesis leading to G(2) delay involving CHK1 and a later induction of G(1) arrest associated both with the induction of p53 target genes and loss of cyclin D(1). We show that substitution of p53/47 for p53 impairs the ER stress G(1) checkpoint, attenuates the recovery of protein translation, and impairs induction of NOXA, a mediator of cell death. We propose that cell cycle regulation in response to ER stress comprises redundant pathways invoked sequentially first to impair G(2) progression prior to ultimate G(1) arrest.


Asunto(s)
Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Genes p53 , Proteína p53 Supresora de Tumor/genética , Animales , Ciclo Celular , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Separación Celular , Drosophila melanogaster , Citometría de Flujo , Células HEK293 , Células HeLa , Humanos , Plásmidos/metabolismo , Biosíntesis de Proteínas , Proteína Fosfatasa 1/metabolismo , Interferencia de ARN , Proteína p53 Supresora de Tumor/metabolismo
4.
J Biol Chem ; 286(6): 4248-56, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21147772

RESUMEN

We have previously shown that overexpressing subunits of the iron-binding protein ferritin can rescue the toxicity of the amyloid ß (Aß) peptide in our Drosophila model system. These data point to an important pathogenic role for iron in Alzheimer disease. In this study, we have used an iron-selective chelating compound and RNAi-mediated knockdown of endogenous ferritin to further manipulate iron in the brain. We confirm that chelation of iron protects the fly from the harmful effects of Aß. To understand the pathogenic mechanisms, we have used biophysical techniques to see how iron affects Aß aggregation. We find that iron slows the progression of the Aß peptide from an unstructured conformation to the ordered cross-ß fibrils that are characteristic of amyloid. Finally, using mammalian cell culture systems, we have shown that iron specifically enhances Aß toxicity but only if the metal is present throughout the aggregation process. These data support the hypothesis that iron delays the formation of well ordered aggregates of Aß and so promotes its toxicity in Alzheimer disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Amiloide/metabolismo , Ferritinas/metabolismo , Hierro/metabolismo , Enfermedad de Alzheimer/genética , Amiloide/genética , Péptidos beta-Amiloides/genética , Animales , Línea Celular Tumoral , Drosophila melanogaster , Ferritinas/genética , Humanos
5.
J Cell Sci ; 123(Pt 17): 2892-900, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20682638

RESUMEN

The integrated stress response (ISR) protects cells from numerous forms of stress and is involved in the growth of solid tumours; however, it is unclear how the ISR acts on cellular proliferation. We have developed a model of ISR signalling with which to study its effects on tissue growth. Overexpression of the ISR kinase PERK resulted in a striking atrophic eye phenotype in Drosophila melanogaster that could be rescued by co-expressing the eIF2alpha phosphatase GADD34. A genetic screen of 3000 transposon insertions identified grapes, the gene that encodes the Drosophila orthologue of checkpoint kinase 1 (CHK1). Knockdown of grapes by RNAi rescued eye development despite ongoing PERK activation. In mammalian cells, CHK1 was activated by agents that induce ER stress, which resulted in a G2 cell cycle delay. PERK was both necessary and sufficient for CHK1 activation. These findings indicate that non-genotoxic misfolded protein stress accesses DNA-damage-induced cell cycle checkpoints to couple the ISR to cell cycle arrest.


Asunto(s)
Proteínas Quinasas/fisiología , Estrés Fisiológico/fisiología , Animales , Ciclo Celular/fisiología , Proliferación Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Daño del ADN , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/genética , Retículo Endoplásmico/fisiología , Activación Enzimática , Ojo/crecimiento & desarrollo , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Fenotipo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/metabolismo , Estrés Fisiológico/genética , Fosfatasas cdc25/metabolismo , eIF-2 Quinasa/biosíntesis , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
6.
Diabetes Metab Res Rev ; 26(8): 611-21, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20922715

RESUMEN

Endoplasmic reticulum (ER) stress is an integral part of life for all professional secretory cells, but it has been studied to greatest depth in the pancreatic ß-cell. This reflects both the crucial role played by ER stress in the pathogenesis of diabetes and also the exquisite vulnerability of these cells to ER dysfunction. The adaptive cellular response to ER stress, the unfolded protein response, comprises mechanisms to both regulate new protein translation and a transcriptional program to allow adaptation to the stress. The core of this response is a triad of stress-sensing proteins: protein kinase R-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6. All three regulate portions of the transcriptional unfolded protein response, while PERK also attenuates protein synthesis during ER stress and IRE1 interacts directly with the c-Jun amino-terminal kinase stress kinase pathway. In this review we shall discuss these processes in detail, with emphasis given to their impact on diabetes and how recent findings indicate that ER stress may be responsible for the loss of ß-cell mass in the disease.


Asunto(s)
Factor de Transcripción Activador 6/fisiología , Diabetes Mellitus/fisiopatología , Retículo Endoplásmico/fisiología , Endorribonucleasas/fisiología , Islotes Pancreáticos/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Estrés Fisiológico/fisiología , Animales , Proteínas de Unión al ADN/fisiología , Diabetes Mellitus Tipo 1/fisiopatología , Epífisis/anomalías , Epífisis/fisiopatología , Glicoproteínas/fisiología , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología , Ratones , Osteocondrodisplasias/fisiopatología , Oxidorreductasas , Factores de Transcripción del Factor Regulador X , Factores de Transcripción/fisiología , Respuesta de Proteína Desplegada
7.
World J Diabetes ; 2(7): 114-8, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21860696

RESUMEN

Both environmental and genetic factors contribute to the development of diabetes mellitus and although monogenic disorders are rare, they offer unique insights into the fundamental biology underlying the disease. Mutations of the insulin gene or genes involved in the response to protein misfolding cause early onset diabetes. These have revealed an important role for endoplasmic reticulum stress in ß-cell survival. This form of cellular stress occurs when secretory proteins fail to fold efficiently. Of all the professional secretory cells we possess, ß-cells are the most sensitive to endoplasmic reticulum stress because of the large fluctuations in protein synthesis they face daily. Studies of endoplasmic reticulum stress signaling therefore offer the potential to identify new drug targets to treat diabetes.

8.
Methods Enzymol ; 501: 421-66, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22078544

RESUMEN

The serpinopathies result from point mutations in members of the serine protease inhibitor or serpin superfamily. They are characterized by the formation of ordered polymers that are retained within the cell of synthesis. This causes disease by a "toxic gain of function" from the accumulated protein and a "loss of function" as a result of the deficiency of inhibitors that control important proteolytic cascades. The serpinopathies are exemplified by the Z (Glu342Lys) mutant of α1-antitrypsin that results in the retention of ordered polymers within the endoplasmic reticulum of hepatocytes. These polymers form the intracellular inclusions that are associated with neonatal hepatitis, cirrhosis, and hepatocellular carcinoma. A second example results from mutations in the neurone-specific serpin-neuroserpin to form ordered polymers that are retained as inclusions within subcortical neurones as Collins' bodies. These inclusions underlie the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. There are different pathways to polymer formation in vitro but not all form polymers that are relevant in vivo. It is therefore essential that protein-based structural studies are interpreted in the context of human samples and cell and animal models of disease. We describe here the biochemical techniques, monoclonal antibodies, cell biology, animal models, and stem cell technology that are useful to characterize the serpin polymers that form in vivo.


Asunto(s)
Biofisica/métodos , Epilepsias Mioclónicas/metabolismo , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/metabolismo , Neuropéptidos/metabolismo , Mutación Puntual , Serpinas/metabolismo , alfa 1-Antitripsina/metabolismo , Animales , Técnicas de Cultivo de Célula , Línea Celular , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/patología , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/patología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Pulmón/patología , Ratones , Ratones Transgénicos , Microscopía Electrónica , Neuropéptidos/química , Neuropéptidos/genética , Neutrófilos/citología , Neutrófilos/metabolismo , Fragmentos de Péptidos , Polimerizacion , Unión Proteica , Conformación Proteica , Proteolisis , Serpinas/química , Serpinas/genética , Transfección , alfa 1-Antitripsina/química , alfa 1-Antitripsina/genética , Neuroserpina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA