Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Immunol Methods ; 527: 113650, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38428517

RESUMEN

Current methodologies for assessing vaccine effectiveness and longevity primarily center on measuring vaccine-induced neutralizing antibodies in serum or plasma. However, these methods overlook additional parameters such as the presence of memory B cells, even as antibody levels wane, and the pivotal role played by memory T cells in shaping antigen-specific memory B cell responses. Several studies have employed a combination of polyclonal activators, such as CpG and R848, along with various cytokines to provoke the recall of memory B cells from peripheral blood mononuclear cells (PBMCs) into antibody-secreting cells (ASCs). Other studies have examined the use of live attenuated viruses to stimulate antigen-specific memory T cells within PBMCs into effector T cells that produce Th1/Th2 cytokines. However, these studies have not fully elucidated the distinct effects of these polyclonal activators on individual subsets, nor have they evaluated whether the vaccine antigen alone is sufficient to trigger the recall of memory T cells. Thus, in this study, we directly compared the capacity of two B cell polyclonal activators to induce the transition of existing vaccine-specific memory cells present in peripheral blood samples into ASCs. Simultaneously, we also assessed the transition of existing memory T cells into effector subsets in response to vaccine antigens. Our findings demonstrate that both polyclonal activator combinations, CpG with IL-6 and IL-15, as well as R848 with IL-2, effectively induce the terminal differentiation of memory B cells into ASCs. Notably, CpG treatment preferentially expanded naïve and non-class-switched B cells, while R848 expanded class-switched memory cells, plasmablasts, and plasma cells. Consequently, R848 treatment led to a greater overall production of total and antigen-specific IgG immunoglobulins. Additionally, the exposure of isolated PBMCs to vaccine antigens alone proved sufficient for recalling the rare antigen-specific memory T cells into effector subsets, predominantly consisting of IFN-γ-producing CD4 T cells and TNF-ß-producing CD8 T cells. This study not only establishes a rationale for the selection of methods to expand and detect antigen-specific lymphocyte subsets but also presents a means to quantify vaccine effectiveness by correlating serum antibody levels with preexisting memory cells within peripheral blood samples.


Asunto(s)
Leucocitos Mononucleares , Vacunas , Humanos , Citocinas , Linfocitos T CD8-positivos , Linfocitos T CD4-Positivos , Memoria Inmunológica
2.
Obes Pillars ; 11: 100121, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39175746

RESUMEN

Background: Obesity and type 2 diabetes mellitus (T2DM) are increasingly common in the United States and worldwide. Because both conditions are associated with serious health consequences, weight reduction is recommended by professional medical and nutrition societies to improve outcomes. Due to the striking efficacy of glucagon-like peptide receptor agonists (GLP-1RAs) and dual mechanism glucose-dependent insulinotropic polypeptide/glucagon-like peptide receptor agonists (GIP/GLP-1RAs) for weight reduction and glycemic control, there is increased utilization for patients with obesity and/or T2DM. Yet, the impact of these medications on dietary intake is less understood. Methods: This narrative literature review summarizes clinical studies quantifying and characterizing dietary intake in people with obesity and/or T2DM using GLP-1 or GIP/GLP-1 RAs. Results: Though data from these studies reveal that total caloric intake was reduced by 16-39 %, few studies evaluated the actual composition of the diet. Conclusions: Further research is needed to understand the unique nutritional needs of adults on GLP-1 or dual GIP/GLP-1RAs and to support the development of nutritional guidelines for these individuals.

3.
Front Clin Diabetes Healthc ; 5: 1399410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903056

RESUMEN

Introduction: Minimizing postprandial glucose response is an important goal for overall diabetes management. Diabetes-specific nutritional shakes (DSNS) have been clinically shown to minimize postprandial glucose response in people with type 2 diabetes (T2DM) compared to high-glycemic foods. However, it is unknown how a high-protein, low-fat DSNS impacts the GLP-1 response. Methods: We tested the postprandial glucose, insulin, and GLP-1 response to a high-protein, low-fat diabetes-specific nutritional shake (DSNS-HP) compared to isocaloric instant oatmeal (IOM) in a randomized, controlled, crossover study in adults with T2DM (n = 24). Participants were randomly selected to receive IOM or DSNS-HP on two test days. Glucose, insulin, and total GLP-1 concentration were measured at baseline and 15, 30, 45, 60, 90, 120, 180, and 240 min postprandially. Results: Compared to IOM, the glucose-positive area under the curve (pAUC) was significantly lower (P = .021). DSNS-HP significantly increased GLP-1 pAUC response by 213% (P <.001) with a corresponding increase in insulin pAUC (P = .033) compared to IOM. Discussion: A high-protein, low-fat DSNS leads to favorable changes in GLP-1 response and is a suitable option to minimize blood glucose response in people with type 2 diabetes.

4.
Environ Pollut ; 344: 123335, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211874

RESUMEN

The presence of per- and poly-fluoroalkyl substances (PFAS) in soils is a global concern as these emerging contaminants are highly resistant to degradation and cause adverse effects on human and environmental health at very low concentrations. Sequestering PFAS in soils using carbon-based materials is a low-cost and effective strategy to minimize pollutant bioavailability and exposure, and may offer potential long-term remediation of PFAS in the environment. This paper provides a comprehensive evaluation of current insights on sequestration of PFAS in soil using carbon-based sorbents. Hydrophobic effects originating from fluorinated carbon (C-F) backbone "tail" and electrostatic interactions deriving from functional groups on the molecules' "head" are the two driving forces governing PFAS sorption. Consequently, varying C-F chain lengths and polar functional groups significantly alter PFAS availability and leachability. Furthermore, matrix parameters such as soil organic matter, inorganic minerals, and pH significantly impact PFAS sequestration by sorbent amendments. Materials such as activated carbon, biochar, carbon nanotubes, and their composites are the primary C-based materials used for PFAS adsorption. Importantly, modifying the carbon structural and surface chemistry is essential for increasing the active sorption sites and for strengthening interactions with PFAS. This review evaluates current literature, identifies knowledge gaps in current remediation technologies and addresses future strategies on the sequestration of PFAS in contaminated soil using sustainable novel C-based sorbents.


Asunto(s)
Restauración y Remediación Ambiental , Fluorocarburos , Nanotubos de Carbono , Contaminantes del Suelo , Humanos , Suelo/química , Contaminantes del Suelo/análisis
5.
Env Sci Adv ; 3(2): 304-313, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38322792

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a class of recalcitrant, highly toxic contaminants, with limited remediation options. Phytoremediation - removal of contaminants using plants - is an inexpensive, community-friendly strategy for reducing PFAS concentrations and exposures. This project is a collaboration between the Mi'kmaq Nation, Upland Grassroots, and researchers at several institutions who conducted phytoremediation field trials using hemp to remove PFAS from soil at the former Loring Air Force base, which has now been returned to the Mi'kmaq Nation. PFAS were analyzed in paired hemp and soil samples using targeted and non-targeted analytical approaches. Additionally, we used hydrothermal liquefaction (HTL) to degrade PFAS in the harvested hemp tissue. We identified 28 PFAS in soil and found hemp uptake of 10 of these PFAS. Consistent with previous studies, hemp exhibited greater bioconcentration for carboxylic acids compared to sulfonic acids, and for shorter-chain compounds compared to longer-chain. In total, approximately 1.4 mg of PFAS was removed from the soil via uptake into hemp stems and leaves, with an approximate maximum of 2% PFAS removed from soil in the most successful area. Degradation of PFAS by HTL was nearly 100% for carboxylic acids, but a portion of sulfonic acids remained. HTL also decreased precursor PFAS and extractable organic fluorine. In conclusion, while hemp phytoremediation does not currently offer a comprehensive solution for PFAS-contaminated soil, this project has effectively reduced PFAS levels at the Loring site and underscores the importance of involving community members in research aimed at remediating their lands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA