Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biomech ; 170: 112160, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38824704

RESUMEN

A single depth camera provides a fast and easy approach to performing biomechanical assessments in a clinical setting; however, there are currently no established methods to reliably determine joint angles from these devices. The primary aim of this study was to compare joint angles as well as the between-day reliability of direct kinematics to model-constrained inverse kinematics recorded using a single markerless depth camera during a range of clinical and athletic movement assessments.A secondary aim was to determine the minimum number of trials required to maximize reliability. Eighteen healthy participants attended two testing sessions one week apart. Tasks included treadmill walking, treadmill running, single-leg squats, single-leg countermovement jumps, bilateral countermovement jumps, and drop vertical jumps. Keypoint data were processed using direct kinematics as well as in OpenSim using a full-body musculoskeletal model and inverse kinematics. Kinematic methods were compared using statistical parametric mapping and between-day reliability was calculated using intraclass correlation coefficients, mean absolute error, and minimal detectable change. Keypoint-derived inverse kinematics resulted in significantly smaller hip flexion (range = -9 to -2°), hip abduction (range = -3 to -2°), knee flexion (range = -5° to -2°), and greater dorsiflexion angles (range = 6-15°) than direct kinematics. Both markerless kinematic methods had high between-day reliability (inverse kinematics ICC 95 %CI = 0.83-0.90; direct kinematics ICC 95 %CI = 0.80-0.93). For certain tasks and joints, keypoint-derived inverse kinematics resulted in greater reliability (up to 0.47 ICC) and smaller minimal detectable changes (up to 13°) than direct kinematics. Performing 2-4 trials was sufficient to maximize reliability for most tasks. A single markerless depth camera can reliably measure lower limb joint angles, and skeletal model-constrained inverse kinematics improves lower limb joint angle reliability for certain tasks and joints.


Asunto(s)
Articulación de la Cadera , Humanos , Masculino , Femenino , Adulto , Fenómenos Biomecánicos , Reproducibilidad de los Resultados , Articulación de la Cadera/fisiología , Articulación de la Rodilla/fisiología , Rango del Movimiento Articular/fisiología , Extremidad Inferior/fisiología , Modelos Biológicos , Movimiento/fisiología , Adulto Joven
2.
Ann Biomed Eng ; 51(3): 493-505, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36085332

RESUMEN

Six kinematic parameters are needed to fully describe three-dimensional (3D) bone motion at a joint. At the knee, the relative movements of the femur and tibia are often represented by a 1-degree-of-freedom (1-DOF) model with a single flexion-extension axis or a 2-DOF model comprising a flexion-extension axis and an internal-external rotation axis. The primary aim of this study was to determine the accuracy with which 1-DOF and 2-DOF models predict the 3D movements of the femur, tibia and patella during daily activities. Each model was created by fitting polynomial functions to 3D tibiofemoral (TF) and patellofemoral (PF) kinematic data recorded from 10 healthy individuals performing 6 functional activities. Model cross-validation analyses showed that the 2-DOF model predicted 3D knee kinematics more accurately than the 1-DOF model. At the TF joint, mean root-mean-square (RMS) errors across all activities and all participants were 3.4°|mm (deg or mm) for the 1-DOF model and 2.4°|mm for the 2-DOF model. At the PF joint, mean RMS errors were 4.0°|mm and 3.9°|mm for the 1-DOF and 2-DOF models, respectively. These results indicate that a 2-DOF model with two rotations as inputs may be used with confidence to predict the full 3D motion of the knee-joint complex.


Asunto(s)
Articulación Patelofemoral , Humanos , Rango del Movimiento Articular , Articulación de la Rodilla , Rodilla , Fémur , Tibia , Fenómenos Biomecánicos
3.
J Orthop Res ; 40(8): 1756-1769, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34878691

RESUMEN

We combined mobile biplane X-ray imaging and magnetic resonance imaging to measure the regions of articular cartilage contact and cartilage thickness at the tibiofemoral and patellofemoral joints during six functional activities: standing, level walking, downhill walking, stair ascent, stair descent, and open-chain (non-weight-bearing) knee flexion. The contact centers traced similar paths on the medial and lateral femoral condyles, femoral trochlea, and patellar facet in all activities while their locations on the tibial plateau were more varied. The translations of the contact centers on the femur and patella were tightly coupled to the tibiofemoral flexion angle in all activities (r2 > 0.95) whereas those on the tibia were only moderately related to the flexion angle (r2 > 0.62). The regions of contacting cartilage were significantly thicker than the regions of non-contacting cartilage on the patella, femoral trochlea, and the medial and lateral tibial plateaus in all activities (p < 0.001). There were no significant differences in thickness between contacting and non-contacting cartilage on the medial and lateral femoral condyles in all activities, except open-chain knee flexion. Our results provide partial support for the proposition that cartilage thickness is adapted to joint load and do not exclude the possibility that other factors, such as joint congruence, also play a role in regulating the structure and organization of healthy cartilage. The data obtained in this study may serve as a guide when evaluating articular contact motion in osteoarthritic and reconstructed knees.


Asunto(s)
Cartílago Articular , Articulación de la Rodilla , Fenómenos Biomecánicos , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/fisiología , Fémur/diagnóstico por imagen , Fémur/fisiología , Humanos , Rodilla , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/fisiología , Imagen por Resonancia Magnética , Rótula/fisiología , Rango del Movimiento Articular/fisiología , Tibia/diagnóstico por imagen
4.
J Biomech ; 123: 110484, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34062347

RESUMEN

We measured the moment arm of the knee-extensor mechanism as ten healthy young individuals performed six functional activities: level walking, downhill walking, stair ascent, stair descent, open-chain (non-weight-bearing) knee flexion, and open-chain knee extension. The moment arm of the knee-extensor mechanism was described by the moment arm of the patellar-tendon force, which acts to rotate the tibia about the instantaneous axis of rotation (screw axis) of the knee. A mobile biplane X-ray imaging system enabled simultaneous measurements of the three-dimensional movements of the femur, tibia and patella during each activity, from which the position and orientation of the screw axis and the patellar-tendon moment arm (PTMA) were determined. Mean PTMA across all activities and all participants remained nearly constant (~46 mm) from 0° to 70° of knee flexion and decreased by no more than 20% at higher flexion angles. The magnitude of the PTMA varied more substantially across individuals than across activities, indicating that the moment arm is more heavily influenced by differences in knee-joint geometry than muscle loading. Hence, PTMA measurements obtained for a given activity performed by one individual may be used with good confidence to describe the PTMA for any other activity performed by the same individual. Caution is advised when using PTMA measurements obtained from one individual to describe the moment arm in another individual even once the data are normalized by knee bone size, as the PTMA varied by as much as 13% from the mean across individuals.


Asunto(s)
Rótula , Ligamento Rotuliano , Fenómenos Biomecánicos , Fémur , Humanos , Articulación de la Rodilla , Rango del Movimiento Articular
5.
Ann Biomed Eng ; 48(12): 2821-2835, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33200262

RESUMEN

We combined computational modelling with experimental gait data to describe and explain load distribution across the medial and lateral facets of the patella during normal walking. The body was modelled as a 13-segment, 32-degree-of-freedom (DOF) skeleton actuated by 80 muscles. The knee was represented as a 3-body, 12-DOF mechanical system with deformable articular cartilage surfaces at the tibiofemoral (TF) and patellofemoral (PF) joints. Passive responses of the knee model to 100 N anterior-posterior drawer and 5 Nm axial torque tests were consistent with cadaver data reported in the literature. Trajectories of 6-DOF TF and PF joint motion and articular joint contact calculated for walking were also consistent with measurements obtained from biplane X-ray imaging. The force acting on the lateral patellar facet was considerably higher than that on the medial facet throughout the gait cycle. The vastus medialis, vastus lateralis and patellar tendon forces contributed substantially to the first peak in the PF contact force during stance whereas all three portions of the vasti and rectus femoris were responsible for the second peak during swing. A higher lateral patellar contact force was caused mainly by the laterally-directed shear force applied by the quadriceps muscles, especially the vastus lateralis, intermedius and rectus femoris. A better understanding of the contributions of the individual knee muscles to load distribution in the PF compartment may lead to improved surgical and physiotherapy methods to treat PF disorders.


Asunto(s)
Articulación Patelofemoral/fisiología , Caminata/fisiología , Adulto , Cadáver , Cartílago Articular/fisiología , Simulación por Computador , Femenino , Humanos , Masculino , Modelos Biológicos , Músculo Cuádriceps/fisiología , Reproducibilidad de los Resultados , Soporte de Peso , Adulto Joven
6.
J Orthop Res ; 37(3): 615-630, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30680795

RESUMEN

Accurate knowledge of knee kinematics is important for a better understanding of normal joint function and for improving patient outcomes subsequent to joint reconstructive surgery. Limited information is available that accurately describes the relative movements of the bones at the knee in vivo, even for the most common of all activities: walking. We used a mobile X-ray imaging system to measure the three-dimensional motion of the entire knee-joint complex-femur, tibia, and patella-when humans walk over ground at their natural speeds. Data were recorded from 15 healthy individuals (9 males, 6 females; age 30.5 ± 6.2 years). The most pronounced rotational motion of the tibia was flexion-extension followed by internal-external rotation and abduction-adduction (peak-to-peak displacements: 70.7°, 9.2°, and 1.9°, respectively). Maximum anterior translation of the tibia was 6.5 mm and occurred in early swing, coinciding with peak knee flexion and peak internal rotation. The most prominent rotational motion of the patella was flexion-extension (peak-to-peak displacement: 50.5°). The tibia pivoted about the medial compartment of the tibiofemoral joint, conferring greater movements of the contact centers in the lateral compartment than the medial compartment (15.4 and 9.7 mm, respectively). Internal-external rotation, anterior-posterior translation and medial-lateral shift of the tibia as well as flexion-extension and anterior-posterior translation of the patella were each coupled to the knee flexion angle, as were movements of the contact centers at each joint. These fundamental data serve as a valuable resource for evaluating knee joint function in normal and pathological gait. The data are available in Supplementary_Material_Data.xlsx. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.


Asunto(s)
Articulación de la Rodilla/fisiología , Caminata/fisiología , Adulto , Fenómenos Biomecánicos , Estudios Transversales , Femenino , Fémur/fisiología , Humanos , Imagenología Tridimensional , Articulación de la Rodilla/diagnóstico por imagen , Masculino , Rótula/fisiología , Radiografía , Tibia/fisiología , Adulto Joven
7.
J Biomech ; 60: 238-242, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28755815

RESUMEN

Patellofemoral pain is a disabling, highly prevalent pathology. Altered patellofemoral contact forces are theorized to contribute to this pain. Musculoskeletal modeling has been employed to better understand the etiology of patellofemoral pain. Currently, there are no data on the effective quadriceps moment arm for individuals with patellofemoral pain, forcing researchers to apply normative values when modeling such individuals. In addition, the ratio of patellofemoral reaction force to quadriceps force is often used as a surrogate for patellofemoral joint contact force, ignoring the fact that the quadriceps efficiency can vary with pathology and intervention. Thus, the purposes of this study were to: (1) quantify the effective quadriceps moment arm in individuals with patellofemoral pain and compare this value to a control cohort and (2) develop a novel methodology for quantifying the normalized patellofemoral joint reaction force in vivo during dynamic activities. Dynamic MR data were captured as subjects with patellofemoral pain (30F/3M) cyclically flexed their knee from 10° to 40°. Data for control subjects (29F/9M) were taken from a previous study. The moment arm data acquired across a large cohort of individuals with patellofemoral pain should help advance musculoskeletal modeling. The primary finding of this study was an increased mean normalized patellofemoral reaction force of 14.9% (maximum values at a knee angle of 10°) in individuals with patellofemoral pain. Understanding changes in the normalized patellofemoral reaction force with pathology may lead to improvements in clinical decision making, and consequently treatments, by providing a more direct measure of altered patellofemoral joint forces.


Asunto(s)
Dolor/fisiopatología , Articulación Patelofemoral/fisiología , Adolescente , Adulto , Fenómenos Biomecánicos , Niño , Femenino , Humanos , Articulación de la Rodilla/fisiología , Masculino , Músculo Cuádriceps/fisiología , Rango del Movimiento Articular , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA