Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 35(1): 318-335, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36409008

RESUMEN

Nitrate is a major nutrient and osmoticum for plants. To deal with fluctuating nitrate availability in soils, plants store this nutrient in their vacuoles. Chloride channel a (CLCa), a 2NO3-/1H+ exchanger localized to the vacuole in Arabidopsis (Arabidopsis thaliana), ensures this storage process. CLCa belongs to the CLC family, which includes anion/proton exchangers and anion channels. A mutation in a glutamate residue conserved across CLC exchangers is likely responsible for the conversion of exchangers to channels. Here, we show that CLCa with a mutation in glutamate 203 (E203) behaves as an anion channel in its native membrane. We introduced the CLCaE203A point mutation to investigate its physiological importance into the Arabidopsis clca knockout mutant. These CLCaE203A mutants displayed a growth deficit linked to the disruption of water homeostasis. Additionally, CLCaE203A expression failed to complement the defect in nitrate accumulation of clca and favored higher N-assimilation at the vegetative stage. Further analyses at the post-flowering stages indicated that CLCaE203A expression results in an increase in N uptake allocation to seeds, leading to a higher nitrogen use efficiency compared to the wild-type. Altogether, these results point to the critical function of the CLCa exchanger on the vacuole for plant metabolism and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Transportadores de Nitrato , Nitratos/metabolismo , Protones , Vacuolas/metabolismo , Nitrógeno/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aniones/metabolismo , Plantas/metabolismo , Mutación/genética , Regulación de la Expresión Génica de las Plantas
2.
Plant Physiol ; 192(1): 356-369, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36722179

RESUMEN

Manganese (Mn) is an essential metal for plant growth. The most important Mn-containing enzyme is the Mn4CaO5 cluster that catalyzes water oxidation in photosystem II (PSII). Mn deficiency primarily affects photosynthesis, whereas Mn excess is generally toxic. Here, we studied Mn excess and deficiency in the liverwort Marchantia polymorpha, an emerging model ideally suited for analysis of metal stress since it accumulates rapidly toxic substances due to the absence of well-developed vascular and radicular systems and a reduced cuticle. We established growth conditions for Mn excess and deficiency and analyzed the metal content in thalli and isolated chloroplasts. In vivo super-resolution fluorescence microscopy and transmission electron microscopy revealed changes in the organization of the thylakoid membrane under Mn excess and deficiency. Both Mn excess and Mn deficiency increased the stacking of the thylakoid membrane. We investigated photosynthetic performance by measuring chlorophyll fluorescence at room temperature and 77 K, measuring P700 absorbance, and studying the susceptibility of thalli to photoinhibition. Nonoptimal Mn concentrations changed the ratio of PSI to PSII. Upon Mn deficiency, higher non-photochemical quenching was observed, electron donation to PSI was favored, and PSII was less susceptible to photoinhibition. Mn deficiency seemed to favor cyclic electron flow around PSI, thereby protecting PSII in high light. The results presented here suggest an important role of Mn in the organization of the thylakoid membrane and photosynthetic electron transport.


Asunto(s)
Manganeso , Marchantia , Cloroplastos , Fotosíntesis , Tilacoides , Transporte de Electrón , Complejo de Proteína del Fotosistema II , Clorofila , Complejo de Proteína del Fotosistema I , Luz
3.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33372153

RESUMEN

Plants spend most of their life oscillating around 1-3 Hz due to the effect of the wind. Therefore, stems and foliage experience repetitive mechanical stresses through these passive movements. However, the mechanism of the cellular perception and transduction of such recurring mechanical signals remains an open question. Multimeric protein complexes forming mechanosensitive (MS) channels embedded in the membrane provide an efficient system to rapidly convert mechanical tension into an electrical signal. So far, studies have mostly focused on nonoscillatory stretching of these channels. Here, we show that the plasma-membrane MS channel MscS-LIKE 10 (MSL10) from the model plant Arabidopsis thaliana responds to pulsed membrane stretching with rapid activation and relaxation kinetics in the range of 1 s. Under sinusoidal membrane stretching MSL10 presents a greater activity than under static stimulation. We observed this amplification mostly in the range of 0.3-3 Hz. Above these frequencies the channel activity is very close to that under static conditions. With a localization in aerial organs naturally submitted to wind-driven oscillations, our results suggest that the MS channel MSL10, and by extension MS channels sharing similar properties, represents a molecular component allowing the perception of oscillatory mechanical stimulations by plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Mecanotransducción Celular/fisiología , Proteínas de la Membrana/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Membrana Celular/fisiología , Canales Iónicos/metabolismo , Transporte Iónico , Mecanorreceptores/metabolismo , Proteínas de la Membrana/fisiología , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal
4.
Mol Biol Evol ; 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35700212

RESUMEN

Transition metals are essential for a wealth of metabolic reactions, but their concentrations need to be tightly controlled across cells and cell compartments, as metal excess or imbalance has deleterious effects. Metal homeostasis is achieved by a combination of metal transport across membranes and metal binding to a variety of molecules. Gene duplication is a key process in evolution, as emergence of advantageous mutations on one of the copies can confer a new function. Here, we report that the poplar genome contains two paralogues encoding NRAMP3 metal transporters localized in tandem. All Populus species analyzed had two copies of NRAMP3, whereas only one could be identified in Salix species indicating that duplication occurred when the two genera separated. Both copies are under purifying selection and encode functional transporters, as shown by expression in the yeast heterologous expression system. However, genetic complementation revealed that only one of the paralogues has retained the original function in release of metals stored in the vacuole previously characterized in A. thaliana. Confocal imaging showed that the other copy has acquired a distinct localization to the Trans Golgi Network (TGN). Expression in poplar suggested that the copy of NRAMP3 localized on the TGN has a novel function in the control of cell-to-cell transport of manganese. This work provides a clear case of neo-functionalization through change in the subcellular localization of a metal transporter as well as evidence for the involvement of the secretory pathway in cell-to-cell transport of manganese.

5.
Proc Biol Sci ; 290(2012): 20231462, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38052247

RESUMEN

A fundamental function of an organ is the ability to perceive mechanical cues. Yet, how this is accomplished is not fully understood, particularly in plant roots. In plants, the majority of studies dealing with the effects of mechanical stress have investigated the aerial parts. However, in natural conditions roots are also subjected to mechanical cues, for example when the root encounters a hard obstacle during its growth or when the soil settles. To investigate root cellular responses to root compression, we developed a microfluidic system associated with a microvalve allowing the delivery of controlled and reproducible mechanical stimulations to the root. In this study, examining plants expressing the R-GECO1-mTurquoise calcium reporter, we addressed the root cell deformation and calcium increase induced by the mechanical stimulation. Lateral pressure applied on the root induced a moderate elastic deformation of root cortical cells and elicited a multicomponent calcium signal at the onset of the pressure pulse, followed by a second one at the release of the pressure. This indicates that straining rather than stressing of tissues is relevant to trigger the calcium signal. Although the intensity of the calcium response increases with the pressure applied, successive pressure stimuli led to a remarkable attenuation of the calcium signal. The calcium elevation was restricted to the tissue under pressure and did not propagate. Strain sensing, spatial restriction and habituation to repetitive stimulation represent the fundamental properties of root signalling in response to local mechanical stimulation. These data linking mechanical properties of root cells to calcium elevation contribute to elucidating the pathway allowing the root to adapt to the mechanical cues generated by the soil.


Asunto(s)
Arabidopsis , Calcio/metabolismo , Transducción de Señal/fisiología , Suelo , Raíces de Plantas
6.
Proc Natl Acad Sci U S A ; 117(26): 15343-15353, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32546525

RESUMEN

Ion transporters are key players of cellular processes. The mechanistic properties of ion transporters have been well elucidated by biophysical methods. Meanwhile, the understanding of their exact functions in cellular homeostasis is limited by the difficulty of monitoring their activity in vivo. The development of biosensors to track subtle changes in intracellular parameters provides invaluable tools to tackle this challenging issue. AtCLCa (Arabidopsis thaliana Chloride Channel a) is a vacuolar NO3-/H+ exchanger regulating stomata aperture in Athaliana Here, we used a genetically encoded biosensor, ClopHensor, reporting the dynamics of cytosolic anion concentration and pH to monitor the activity of AtCLCa in vivo in Arabidopsis guard cells. We first found that ClopHensor is not only a Cl- but also, an NO3- sensor. We were then able to quantify the variations of NO3- and pH in the cytosol. Our data showed that AtCLCa activity modifies cytosolic pH and NO3- In an AtCLCa loss of function mutant, the cytosolic acidification triggered by extracellular NO3- and the recovery of pH upon treatment with fusicoccin (a fungal toxin that activates the plasma membrane proton pump) are impaired, demonstrating that the transport activity of this vacuolar exchanger has a profound impact on cytosolic homeostasis. This opens a perspective on the function of intracellular transporters of the Chloride Channel (CLC) family in eukaryotes: not only controlling the intraorganelle lumen but also, actively modifying cytosolic conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canales de Cloruro/metabolismo , Citosol/química , Homeostasis/fisiología , Nitratos/química , Proteínas de Arabidopsis/genética , Canales de Cloruro/genética , Citosol/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Concentración de Iones de Hidrógeno , Nitratos/metabolismo
7.
New Phytol ; 236(1): 283-295, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35801827

RESUMEN

Root-knot nematodes (RKNs) are root endoparasites that induce the dedifferentiation of a few root cells and the reprogramming of their gene expression to generate giant hypermetabolic feeding cells. We identified two microRNA families, miR408 and miR398, as upregulated in Arabidopsis thaliana and Solanum lycopersicum roots infected by RKNs. In plants, the expression of these two conserved microRNA families is known to be activated by the SPL7 transcription factor in response to copper starvation. By combining functional approaches, we deciphered the network involving these microRNAs, their regulator and their targets. MIR408 expression was located within nematode-induced feeding cells like its regulator SPL7 and was regulated by copper. Moreover, infection assays with mir408 and spl7 knockout mutants or lines expressing targets rendered resistant to cleavage by miR398 demonstrated the essential role of the SPL7/MIR408/MIR398 module in the formation of giant feeding cells. Our findings reveal how perturbation of plant copper homeostasis, via the SPL7/MIR408/MIR398 module, modulates the development of nematode-induced feeding cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Tylenchoidea , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cobre/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Tylenchoidea/fisiología
8.
J Exp Bot ; 73(6): 1789-1799, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35134869

RESUMEN

The provision of sustainable, sufficient, and nutritious food to the growing population is a major challenge for agriculture and the plant research community. In this respect, the mineral micronutrient content of food crops deserves particular attention. Micronutrient deficiencies in cultivated soils and plants are a global problem that adversely affects crop production and plant nutritional value, as well as human health and well-being. In this review, we call for awareness of the importance and relevance of micronutrients in crop production and quality. We stress the need for better micronutrient nutrition in human populations, not only in developing but also in developed nations, and describe strategies to identify and characterize new varieties with high micronutrient content. Furthermore, we explain how adequate nutrition of plants with micronutrients impacts metabolic functions and the capacity of plants to express tolerance mechanisms against abiotic and biotic constraints. Finally, we provide a brief overview and a critical discussion on current knowledge, future challenges, and specific technological needs for research on plant micronutrient homeostasis. Research in this area is expected to foster the sustainable development of nutritious and healthy food crops for human consumption.


Asunto(s)
Micronutrientes , Oligoelementos , Agricultura/métodos , Productos Agrícolas/metabolismo , Alimentos Fortificados , Homeostasis , Humanos , Micronutrientes/metabolismo
9.
New Phytol ; 229(2): 994-1006, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32583438

RESUMEN

The Anthropocene epoch is associated with the spreading of metals in the environment increasing oxidative and genotoxic stress on organisms. Interestingly, c. 520 plant species growing on metalliferous soils acquired the capacity to accumulate and tolerate a tremendous amount of nickel in their shoots. The wide phylogenetic distribution of these species suggests that nickel hyperaccumulation evolved multiple times independently. However, the exact nature of these mechanisms and whether they have been recruited convergently in distant species is not known. To address these questions, we have developed a cross-species RNA-Seq approach combining differential gene expression analysis and cluster of orthologous group annotation to identify genes linked to nickel hyperaccumulation in distant plant families. Our analysis reveals candidate orthologous genes encoding convergent function involved in nickel hyperaccumulation, including the biosynthesis of specialized metabolites and cell wall organization. Our data also point out that the high expression of IREG/Ferroportin transporters recurrently emerged as a mechanism involved in nickel hyperaccumulation in plants. We further provide genetic evidence in the hyperaccumulator Noccaea caerulescens for the role of the NcIREG2 transporter in nickel sequestration in vacuoles. Our results provide molecular tools to better understand the mechanisms of nickel hyperaccumulation and study their evolution in plants.


Asunto(s)
Brassicaceae , Níquel , Brassicaceae/genética , Filogenia , RNA-Seq , Suelo
10.
Biochem J ; 477(1): 259-274, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31950999

RESUMEN

To ensure the success of the new generation in annual species, the mother plant transfers a large proportion of the nutrients it has accumulated during its vegetative life to the next generation through its seeds. Iron (Fe) is required in large amounts to provide the energy and redox power to sustain seedling growth. However, free Fe is highly toxic as it leads to the generation of reactive oxygen species. Fe must, therefore, be tightly bound to chelating molecules to allow seed survival for long periods of time without oxidative damage. Nevertheless, when conditions are favorable, the seed's Fe stores have to be readily remobilized to achieve the transition toward active photosynthesis before the seedling becomes able to take up Fe from the environment. This is likely critical for the vigor of the young plant. Seeds constitute an important dietary source of Fe, which is essential for human health. Understanding the mechanisms of Fe storage in seeds is a key to improve their Fe content and availability in order to fight Fe deficiency. Seed longevity, germination efficiency and seedling vigor are also important traits that may be affected by the chemical form under which Fe is stored. In this review, we summarize the current knowledge on seed Fe loading during development, long-term storage and remobilization upon germination. We highlight how this knowledge may help seed Fe biofortification and discuss how Fe storage may affect the seed quality and germination efficiency.


Asunto(s)
Arabidopsis/metabolismo , Germinación/fisiología , Hierro/metabolismo , Plantones/metabolismo , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología
11.
Proc Natl Acad Sci U S A ; 114(16): E3354-E3363, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28373552

RESUMEN

"Too much of a good thing" perfectly describes the dilemma that living organisms face with metals. The tight control of metal homeostasis in cells depends on the trafficking of metal transporters between membranes of different compartments. However, the mechanisms regulating the location of transport proteins are still largely unknown. Developing Arabidopsis thaliana seedlings require the natural resistance-associated macrophage proteins (NRAMP3 and NRAMP4) transporters to remobilize iron from seed vacuolar stores and thereby acquire photosynthetic competence. Here, we report that mutations in the pleckstrin homology (PH) domain-containing protein AtPH1 rescue the iron-deficient phenotype of nramp3nramp4 Our results indicate that AtPH1 binds phosphatidylinositol 3-phosphate (PI3P) in vivo and acts in the late endosome compartment. We further show that loss of AtPH1 function leads to the mislocalization of the metal uptake transporter NRAMP1 to the vacuole, providing a rationale for the reversion of nramp3nramp4 phenotypes. This work identifies a PH domain protein as a regulator of plant metal transporter localization, providing evidence that PH domain proteins may be effectors of PI3P for protein sorting.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Metales/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Raíces de Plantas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Secuencia de Bases , Transporte Iónico , Mutación , Fenotipo , Raíces de Plantas/crecimiento & desarrollo
12.
Plant Physiol ; 177(3): 1267-1276, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29784767

RESUMEN

During seed germination, iron (Fe) stored in vacuoles is exported by the redundant NRAMP3 and NRAMP4 transporter proteins. A double nramp3 nramp4 mutant is unable to mobilize Fe stores and does not develop in the absence of external Fe. We used RNA sequencing to compare gene expression in nramp3 nramp4 and wild type during germination and early seedling development. Even though sufficient Fe was supplied, the Fe-responsive transcription factors bHLH38, 39, 100, and 101 and their downstream targets FRO2 and IRT1 mediating Fe uptake were strongly upregulated in the nramp3 nramp4 mutant. Activation of the Fe deficiency response was confirmed by increased ferric chelate reductase activity in the mutant. At early stages, genes important for chloroplast redox control (FSD1 and SAPX), Fe homeostasis (FER1 and SUFB), and chlorophyll metabolism (HEMA1 and NYC1) were downregulated, indicating limited Fe availability in plastids. In contrast, expression of FRO3, encoding a ferric reductase involved in Fe import into the mitochondria, was maintained, and Fe-dependent enzymes in the mitochondria were unaffected in nramp3 nramp4 Together, these data show that a failure to mobilize Fe stores during germination triggered Fe deficiency responses and strongly affected plastids, but not mitochondria.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Germinación/fisiología , Hierro/metabolismo , Vacuolas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/genética , Regulación de la Expresión Génica de las Plantas , Mitocondrias/metabolismo , Mutación , Plastidios/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Semillas/fisiología
13.
J Exp Bot ; 70(3): 859-869, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30395253

RESUMEN

Micronutrient deficiencies affect a large part of the world's population. These deficiencies are mostly due to the consumption of grains with insufficient content of iron (Fe) or zinc (Zn). Both de novo uptake by roots and recycling from leaves may provide seeds with nutrients. Autophagy, which is a conserved mechanism for nutrient recycling in eukaryotes, was shown to be involved in nitrogen remobilization to seeds. Here, we have investigated the role of this mechanism in micronutrient translocation to seeds. We found that Arabidopsis thaliana plants impaired in autophagy display defects in nutrient remobilization to seeds. In the atg5-1 mutant, which is completely defective in autophagy, the efficiency of Fe translocation from vegetative organs to seeds was severely decreased even when Fe was provided during seed formation. Combining atg5-1 with the sid2 mutation that counteracts premature senescence associated with autophagy deficiency and using 57Fe pulse labeling, we propose a two-step mechanism in which Fe taken up de novo during seed formation is first accumulated in vegetative organs and subsequently remobilized to seeds. Finally, we show that translocation of Zn and manganese (Mn) to seeds is also dependent on autophagy. Fine-tuning autophagy during seed formation opens up new possibilities to improve micronutrient remobilization to seeds.


Asunto(s)
Arabidopsis/metabolismo , Autofagia , Hierro/metabolismo , Semillas/metabolismo , Arabidopsis/genética , Autofagia/genética , Transporte Biológico , Manganeso/metabolismo , Micronutrientes/metabolismo , Zinc/metabolismo
14.
Plant J ; 83(4): 625-37, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26088788

RESUMEN

Each essential transition metal plays a specific role in metabolic processes and has to be selectively transported. Living organisms need to discriminate between essential and non-essential metals such as cadmium (Cd(2+) ), which is highly toxic. However, transporters of the natural resistance-associated macrophage protein (NRAMP) family, which are involved in metal uptake and homeostasis, generally display poor selectivity towards divalent metal cations. In the present study we used a unique combination of yeast-based selection, electrophysiology on Xenopus oocytes and plant phenotyping to identify and characterize mutations that allow plant and mammalian NRAMP transporters to discriminate between their metal substrates. We took advantage of the increased Cd(2+) sensitivity of yeast expressing AtNRAMP4 to select mutations that decrease Cd(2+) sensitivity while maintaining the ability of AtNRAMP4 to transport Fe(2+) in a population of randomly mutagenized AtNRAMP4 cDNAs. The selection identified mutations in three residues. Among the selected mutations, several affect Zn(2+) transport, whereas only one, E401K, impairs Mn(2+) transport by AtNRAMP4. Introduction of the mutation F413I, located in a highly conserved domain, into the mammalian DMT1 transporter indicated that the importance of this residue in metal selectivity is conserved among NRAMP transporters from plant and animal kingdoms. Analyses of overexpressing plants showed that AtNRAMP4 affects the accumulation of metals in roots. Interestingly, the mutations selectively modify Cd(2+) and Zn(2+) accumulation without affecting Fe transport mediated by NRAMP4 in planta. This knowledge may be applicable for limiting Cd(2+) transport by other NRAMP transporters from animals or plants.


Asunto(s)
Arabidopsis/metabolismo , Cadmio/toxicidad , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Metales/metabolismo , Mutación , Vacuolas/metabolismo
15.
Plant Cell Physiol ; 57(4): 764-75, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26556649

RESUMEN

In plant cells, anion channels and transporters are essential for key functions such as nutrition, ion homeostasis and resistance to biotic or abiotic stresses. We characterized AtCLCg, a member of the chloride channel (CLC) family in Arabidopsis localized in the vacuolar membrane. When grown on NaCl or KCl, atclcg knock-out mutants showed a decrease in biomass. In the presence of NaCl, these mutants overaccumulate chloride in shoots. No difference in growth was detected in response to osmotic stress by mannitol. These results suggest a physiological function of AtCLCg in the chloride homeostasis during NaCl stress. AtCLCg shares a high degree of identity (62%) with AtCLCc, another vacuolar CLC essential for NaCl tolerance. However, the atclcc atclccg double mutant is not more sensitive to NaCl than single mutants. As the effects of both mutations are not additive, gene expression analyses were performed and revealed that: (i)AtCLCg is expressed in mesophyll cells, hydathodes and phloem while AtCLCc is expressed in stomata; and (ii)AtCLCg is repressed in the atclcc mutant background, and vice versa. Altogether these results demonstrate that both AtCLCc and AtCLCg are important for tolerance to excess chloride but not redundant, and form part of a regulatory network controlling chloride sensitivity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Canales de Cloruro/metabolismo , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Canales de Cloruro/genética , Células del Mesófilo/metabolismo , Presión Osmótica , Tolerancia a la Sal/fisiología , Cloruro de Sodio/farmacología , Estrés Fisiológico
17.
Plant Physiol ; 169(1): 748-59, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26232490

RESUMEN

To improve seed iron (Fe) content and bioavailability, it is crucial to decipher the mechanisms that control Fe storage during seed development. In Arabidopsis (Arabidopsis thaliana) seeds, most Fe is concentrated in insoluble precipitates, with phytate in the vacuoles of cells surrounding the vasculature of the embryo. NATURAL RESISTANCE ASSOCIATED-MACROPHAGE PROTEIN3 (AtNRAMP3) and AtNRAMP4 function redundantly in Fe retrieval from vacuoles during germination. When germinated under Fe-deficient conditions, development of the nramp3nramp4 double mutant is arrested as a consequence of impaired Fe mobilization. To identify novel genes involved in seed Fe homeostasis, we screened an ethyl methanesulfonate-mutagenized population of nramp3nramp4 seedlings for mutations suppressing their phenotypes on low Fe. Here, we report that, among the suppressors, two independent mutations in the VACUOLAR IRON TRANSPORTER1 (AtVIT1) gene caused the suppressor phenotype. The AtVIT1 transporter is involved in Fe influx into vacuoles of endodermal and bundle sheath cells. This result establishes a functional link between Fe loading in vacuoles by AtVIT1 and its remobilization by AtNRAMP3 and AtNRAMP4. Moreover, analysis of subcellular Fe localization indicates that simultaneous disruption of AtVIT1, AtNRAMP3, and AtNRAMP4 limits Fe accumulation in vacuolar globoids.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte de Catión/genética , Hierro/metabolismo , Mutación/genética , Vacuolas/metabolismo , Alelos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte de Catión/metabolismo , Cotiledón/efectos de los fármacos , Cotiledón/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Inactivación de Genes , Genes de Plantas , Genes Supresores , Germinación/efectos de los fármacos , Hierro/farmacología , Modelos Biológicos , Mutagénesis , Fenotipo , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Espectrometría por Rayos X , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Vacuolas/efectos de los fármacos
19.
Plant Physiol ; 164(4): 2167-83, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24501001

RESUMEN

Siderophores are specific ferric iron chelators synthesized by virtually all microorganisms in response to iron deficiency. We have previously shown that they promote infection by the phytopathogenic enterobacteria Dickeya dadantii and Erwinia amylovora. Siderophores also have the ability to activate plant immunity. We have used complete Arabidopsis transcriptome microarrays to investigate the global transcriptional modifications in roots and leaves of Arabidopsis (Arabidopsis thaliana) plants after leaf treatment with the siderophore deferrioxamine (DFO). Physiological relevance of these transcriptional modifications was validated experimentally. Immunity and heavy-metal homeostasis were the major processes affected by DFO. These two physiological responses could be activated by a synthetic iron chelator ethylenediamine-di(o-hydroxyphenylacetic) acid, indicating that siderophores eliciting activities rely on their strong iron-chelating capacity. DFO was able to protect Arabidopsis against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. Siderophore treatment caused local modifications of iron distribution in leaf cells visible by ferrocyanide and diaminobenzidine-H2O2 staining. Metal quantifications showed that DFO causes a transient iron and zinc uptake at the root level, which is presumably mediated by the metal transporter iron regulated transporter1 (IRT1). Defense gene expression and callose deposition in response to DFO were compromised in an irt1 mutant. Consistently, plant susceptibility to D. dadantii was increased in the irt1 mutant. Our work shows that iron scavenging is a unique mechanism of immunity activation in plants. It highlights the strong relationship between heavy-metal homeostasis and immunity.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/inmunología , Deferoxamina/farmacología , Hierro/metabolismo , Inmunidad de la Planta/efectos de los fármacos , Sideróforos/farmacología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Enterobacteriaceae/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Homeostasis/efectos de los fármacos , Homeostasis/genética , Inmunidad Innata/efectos de los fármacos , Quelantes del Hierro/farmacología , Modelos Biológicos , Fosforilación/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/fisiología , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Agua/farmacología , Zinc/metabolismo
20.
New Phytol ; 202(1): 198-208, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24372442

RESUMEN

Zinc plays a central role in all living cells as a cofactor for enzymes and as a structural element enabling the adequate folding of proteins. In eukaryotic cells, metals are highly compartmentalized and chelated. Although essential to characterize the mechanisms of Zn(2+) homeostasis, the measurement of free metal concentrations in living cells has proved challenging and the dynamics are difficult to determine. Our work combines the use of genetically encoded Förster resonance energy transfer (FRET) sensors and a novel microfluidic technology, the RootChip, to monitor the dynamics of cytosolic Zn(2+) concentrations in Arabidopsis root cells. Our experiments provide estimates of cytosolic free Zn(2+) concentrations in Arabidopsis root cells grown under sufficient (0.4 nM) and excess (2 nM) Zn(2+) supply. In addition, monitoring the dynamics of cytosolic [Zn(2+) ] in response to external supply suggests the involvement of high- and low-affinity uptake systems as well as release from internal stores. In this study, we demonstrate that the combination of genetically encoded FRET sensors and microfluidics provides an attractive tool to monitor the dynamics of cellular metal ion concentrations over a wide concentration range in root cells.


Asunto(s)
Arabidopsis/metabolismo , Citosol/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Imagenología Tridimensional/métodos , Raíces de Plantas/metabolismo , Zinc/metabolismo , Espacio Extracelular/metabolismo , Espacio Intracelular/metabolismo , Perfusión , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA