Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36744380

RESUMEN

Mitochondrial homeostasis requires a dynamic balance of fission and fusion. The actin cytoskeleton promotes fission, and we found that the mitochondrially localized myosin, myosin 19 (Myo19), is integral to this process. Myo19 knockdown induced mitochondrial elongation, whereas Myo19 overexpression induced fragmentation. This mitochondrial fragmentation was blocked by a Myo19 mutation predicted to inhibit ATPase activity and strong actin binding but not by mutations predicted to affect the working stroke of the motor that preserve ATPase activity. Super-resolution imaging indicated a dispersed localization of Myo19 on mitochondria, which we found to be dependent on metaxins. These observations suggest that Myo19 acts as a dynamic actin-binding tether that facilitates mitochondrial fragmentation. Myo19-driven fragmentation was blocked by depletion of either the CAAX splice variant of the endoplasmic reticulum (ER)-anchored formin INF2 or the mitochondrially localized F-actin nucleator Spire1C (a splice variant of Spire1), which together polymerize actin at sites of mitochondria-ER contact for fission. These observations imply that Myo19 promotes fission by stabilizing mitochondria-ER contacts; we used a split-luciferase system to demonstrate a reduction in these contacts following Myo19 depletion. Our data support a model in which Myo19 tethers mitochondria to ER-associated actin to promote mitochondrial fission.


Asunto(s)
Actinas , Dinámicas Mitocondriales , Actinas/metabolismo , Miosinas/metabolismo , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismo
2.
Appl Environ Microbiol ; 84(21)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30170999

RESUMEN

Salmonella enterica is represented by >2,600 serovars that can differ in routes of transmission, host colonization, and in resistance to antimicrobials. S. enterica is the leading bacterial cause of foodborne illness in the United States, with well-established detection methodology. Current surveillance protocols rely on the characterization of a few colonies to represent an entire sample; thus, minority serovars remain undetected. Salmonella contains two CRISPR loci, CRISPR1 and CRISPR2, and the spacer contents of these can be considered serovar specific. We exploited this property to develop an amplicon-based and multiplexed sequencing approach, CRISPR-SeroSeq (serotyping by sequencing of the CRISPR loci), to identify multiple serovars present in a single sample. Using mixed genomic DNA from two Salmonella serovars, we were able to confidently detect a serovar that constituted 0.01% of the sample. Poultry is a major reservoir of Salmonella spp., including serovars that are frequently associated with human illness, as well as those that are not. Numerous studies have examined the prevalence and diversity of Salmonella spp. in poultry, though these studies were limited to culture-based approaches and therefore only identified abundant serovars. CRISPR-SeroSeq was used to investigate samples from broiler houses and a processing facility. Ninety-one percent of samples harbored multiple serovars, and there was one sample in which four different serovars were detected. In another sample, reads for the minority serovar comprised 0.003% of the total number of Salmonella spacer reads. The most abundant serovars identified were Salmonella enterica serovars Montevideo, Kentucky, Enteritidis, and Typhimurium. CRISPR-SeroSeq also differentiated between multiple strains of some serovars. This high resolution of serovar populations has the potential to be utilized as a powerful tool in the surveillance of Salmonella species.IMPORTANCESalmonella enterica is the leading bacterial cause of foodborne illness in the United States and is represented by over 2,600 distinct serovars. Some of these serovars are pathogenic in humans, while others are not. Current surveillance for this pathogen is limited by the detection of only the most abundant serovars, due to the culture-based approaches that are used. Thus, pathogenic serovars that are present in a minority remain undetected. By exploiting serovar-specific differences in the CRISPR arrays of Salmonella spp., we have developed a high-throughput sequencing tool to be able to identify multiple serovars in a single sample and tested this in multiple poultry samples. This novel approach allows differences in the dynamics of individual Salmonella serovars to be measured and can have a significant impact on understanding the ecology of this pathogen with respect to zoonotic risk and public health.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/microbiología , Infecciones por Salmonella/microbiología , Salmonella enterica/genética , Salmonella enterica/aislamiento & purificación , Serotipificación/métodos , Animales , Pollos , Humanos , Salmonella enterica/clasificación
3.
Nat Commun ; 15(1): 3793, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714822

RESUMEN

Across the cell cycle, mitochondrial dynamics are regulated by a cycling wave of actin polymerization/depolymerization. In metaphase, this wave induces actin comet tails on mitochondria that propel these organelles to drive spatial mixing, resulting in their equitable inheritance by daughter cells. In contrast, during interphase the cycling actin wave promotes localized mitochondrial fission. Here, we identify the F-actin nucleator/elongator FMNL1 as a positive regulator of the wave. FMNL1-depleted cells exhibit decreased mitochondrial polarization, decreased mitochondrial oxygen consumption, and increased production of reactive oxygen species. Accompanying these changes is a loss of hetero-fusion of wave-fragmented mitochondria. Thus, we propose that the interphase actin wave maintains mitochondrial homeostasis by promoting mitochondrial content mixing. Finally, we investigate the mechanistic basis for the observation that the wave drives mitochondrial motility in metaphase but mitochondrial fission in interphase. Our data indicate that when the force of actin polymerization is resisted by mitochondrial tethering to microtubules, as in interphase, fission results.


Asunto(s)
Actinas , Homeostasis , Interfase , Mitocondrias , Dinámicas Mitocondriales , Actinas/metabolismo , Mitocondrias/metabolismo , Humanos , Forminas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células HeLa , Microtúbulos/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA