Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Nat Rev Neurosci ; 25(8): 519-534, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38951687

RESUMEN

During central nervous system (CNS) development, neural progenitor cells (NPCs) generate neurons and glia in two different ways. In direct neurogenesis, daughter cells differentiate directly into neurons or glia, whereas in indirect neurogenesis, neurons or glia are generated after one or more daughter cell divisions. Intriguingly, indirect neurogenesis is not stochastically deployed and plays instructive roles during CNS development: increased generation of cells from specific lineages; increased generation of early or late-born cell types within a lineage; and increased cell diversification. Increased indirect neurogenesis might contribute to the anterior CNS expansion evident throughout the Bilateria and help to modify brain-region size without requiring increased NPC numbers or extended neurogenesis. Increased indirect neurogenesis could be an evolutionary driver of the gyrencephalic (that is, folded) cortex that emerged during mammalian evolution and might even have increased during hominid evolution. Thus, selection of indirect versus direct neurogenesis provides a powerful developmental and evolutionary instrument that drives not only the evolution of CNS complexity but also brain expansion and modulation of brain-region size, and thereby the evolution of increasingly advanced cognitive abilities. This Review describes indirect neurogenesis in several model species and humans, and highlights some of the molecular genetic mechanisms that control this important process.


Asunto(s)
Neurogénesis , Neurogénesis/fisiología , Humanos , Animales , Evolución Biológica , Células-Madre Neurales/fisiología , Células-Madre Neurales/citología , Neuronas/fisiología , Diferenciación Celular/fisiología , Sistema Nervioso Central/fisiología , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/citología , Neuroglía/fisiología , Encéfalo/fisiología , Encéfalo/crecimiento & desarrollo , Encéfalo/citología
2.
Development ; 151(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38819456

RESUMEN

Drosophila nervous system development progresses through a series of well-characterized steps in which homeodomain transcription factors (HDTFs) play key roles during most, if not all, phases. Strikingly, although some HDTFs have only one role, many others are involved in multiple steps of the developmental process. Most Drosophila HDTFs engaged in nervous system development are conserved in vertebrates and often play similar roles during vertebrate development. In this Spotlight, we focus on the role of HDTFs during embryogenesis, where they were first characterized.


Asunto(s)
Proteínas de Drosophila , Proteínas de Homeodominio , Sistema Nervioso , Factores de Transcripción , Animales , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Sistema Nervioso/metabolismo , Sistema Nervioso/embriología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Drosophila/genética , Drosophila/metabolismo , Drosophila/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
3.
J Cell Sci ; 136(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37921122

RESUMEN

The covalent modification of histones is critical for many biological functions in mammals, including gene regulation and chromatin structure. Posttranslational histone modifications are added and removed by specialised 'writer' and 'eraser' enzymes, respectively. One such writer protein implicated in a wide range of cellular processes is SET domain-containing 2 (SETD2), a histone methyltransferase that catalyses the trimethylation of lysine 36 on histone H3 (H3K36me3). Recently, SETD2 has also been found to modify proteins other than histones, including actin and tubulin. The emerging roles of SETD2 in the development and function of the mammalian central nervous system (CNS) are of particular interest as several SETD2 variants have been implicated in neurodevelopmental disorders, such as autism spectrum disorder and the overgrowth disorder Luscan-Lumish syndrome. Here, we summarise the numerous roles of SETD2 in mammalian cellular functions and development, with a focus on the CNS. We also provide an overview of the consequences of SETD2 variants in human disease and discuss future directions for understanding essential cellular functions of SETD2.


Asunto(s)
Trastorno del Espectro Autista , Histonas , Animales , Humanos , Histonas/metabolismo , Trastorno del Espectro Autista/genética , Metilación , Cromatina , Sistema Nervioso Central/metabolismo , Mamíferos/metabolismo
4.
Development ; 149(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35245348

RESUMEN

The hypothalamus displays staggering cellular diversity, chiefly established during embryogenesis by the interplay of several signalling pathways and a battery of transcription factors. However, the contribution of epigenetic cues to hypothalamus development remains unclear. We mutated the polycomb repressor complex 2 gene Eed in the developing mouse hypothalamus, which resulted in the loss of H3K27me3, a fundamental epigenetic repressor mark. This triggered ectopic expression of posteriorly expressed regulators (e.g. Hox homeotic genes), upregulation of cell cycle inhibitors and reduced proliferation. Surprisingly, despite these effects, single cell transcriptomic analysis revealed that most neuronal subtypes were still generated in Eed mutants. However, we observed an increase in glutamatergic/GABAergic double-positive cells, as well as loss/reduction of dopamine, hypocretin and Tac2-Pax6 neurons. These findings indicate that many aspects of the hypothalamic gene regulatory flow can proceed without the key H3K27me3 epigenetic repressor mark, but points to a unique sensitivity of particular neuronal subtypes to a disrupted epigenomic landscape.


Asunto(s)
Desarrollo Embrionario/fisiología , Hipotálamo/fisiología , Neuronas/fisiología , Complejo Represivo Polycomb 2/genética , Proteínas del Grupo Polycomb/genética , Animales , Proliferación Celular/genética , Represión Epigenética/genética , Femenino , Masculino , Ratones , Mutación/genética , Transcriptoma/genética
5.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960704

RESUMEN

The Polycomb Repressive Complex 2 (PRC2) regulates corticogenesis, yet the consequences of mutations to this epigenetic modifier in the mature brain are poorly defined. Importantly, PRC2 core genes are haploinsufficient and causative of several human neurodevelopmental disorders. To address the role of PRC2 in mature cortical structure and function, we conditionally deleted the PRC2 gene Eed from the developing mouse dorsal telencephalon. Adult homozygotes displayed smaller forebrain structures. Single-nucleus transcriptomics revealed that glutamatergic neurons were particularly affected, exhibiting dysregulated gene expression profiles, accompanied by aberrations in neuronal morphology and connectivity. Remarkably, homozygous mice performed well on challenging cognitive tasks. In contrast, while heterozygous mice did not exhibit clear anatomical or behavioral differences, they displayed dysregulation of neuronal genes and altered neuronal morphology that was strikingly different from homozygous phenotypes. Collectively, these data reveal how alterations to PRC2 function shape the mature brain and reveal a dose-specific role for PRC2 in determining glutamatergic neuron identity.


Asunto(s)
Ácido Glutámico , Neurogénesis , Neuronas , Complejo Represivo Polycomb 2 , Animales , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Ratones , Neurogénesis/fisiología , Ácido Glutámico/metabolismo , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Masculino , Ratones Endogámicos C57BL , Femenino , Ratones Transgénicos
6.
PLoS Genet ; 18(6): e1010255, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35737938

RESUMEN

The MCM2-7 complex is a highly conserved hetero-hexameric protein complex, critical for DNA unwinding at the replicative fork during DNA replication. Overexpression or mutation in MCM2-7 genes is linked to and may drive several cancer types in humans. In mice, mutations in MCM2-7 genes result in growth retardation and mortality. All six MCM2-7 genes are also expressed in the developing mouse CNS, but their role in the CNS is not clear. Here, we use the central nervous system (CNS) of Drosophila melanogaster to begin addressing the role of the MCM complex during development, focusing on the specification of a well-studied neuropeptide expressing neuron: the Tv4/FMRFa neuron. In a search for genes involved in the specification of the Tv4/FMRFa neuron we identified Mcm5 and find that it plays a highly specific role in the specification of the Tv4/FMRFa neuron. We find that other components of the MCM2-7 complex phenocopies Mcm5, indicating that the role of Mcm5 in neuronal subtype specification involves the MCM2-7 complex. Surprisingly, we find no evidence of reduced progenitor proliferation, and instead find that Mcm5 is required for the expression of the type I BMP receptor Tkv, which is critical for the FMRFa expression. These results suggest that the MCM2-7 complex may play roles during CNS development outside of its well-established role during DNA replication.


Asunto(s)
Proteínas Morfogenéticas Óseas , Proteínas de Ciclo Celular , Proteínas de Drosophila , Neuronas , Proteínas Serina-Treonina Quinasas , Receptores de Superficie Celular , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ratones , Proteínas de Mantenimiento de Minicromosoma/genética , Neuronas/citología , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal
7.
Development ; 148(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34128986

RESUMEN

The balance between stem cell potency and lineage specification entails the integration of both extrinsic and intrinsic cues, which ultimately influence gene expression through the activity of transcription factors. One example of this is provided by the Hippo signalling pathway, which plays a central role in regulating organ size during development. Hippo pathway activity is mediated by the transcriptional co-factors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), which interact with TEA domain (TEAD) proteins to regulate gene expression. Although the roles of YAP and TAZ have been intensively studied, the roles played by TEAD proteins are less well understood. Recent studies have begun to address this, revealing that TEADs regulate the balance between progenitor self-renewal and differentiation throughout various stages of development. Furthermore, it is becoming apparent that TEAD proteins interact with other co-factors that influence stem cell biology. This Primer provides an overview of the role of TEAD proteins during development, focusing on their role in Hippo signalling as well as within other developmental, homeostatic and disease contexts.


Asunto(s)
Susceptibilidad a Enfermedades , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Familia de Multigenes , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Biomarcadores , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Homeostasis , Humanos , Terapia Molecular Dirigida , Especificidad de Órganos , Regeneración , Especificidad de la Especie , Células Madre/citología , Células Madre/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Vertebrados
8.
Bioinformatics ; 39(7)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37449901

RESUMEN

MOTIVATION: Identification of cell types using single-cell RNA-seq is revolutionizing the study of multicellular organisms. However, typical single-cell RNA-seq analysis often involves post hoc manual curation to ensure clusters are transcriptionally distinct, which is time-consuming, error-prone, and irreproducible. RESULTS: To overcome these obstacles, we developed Cytocipher, a bioinformatics method and scverse compatible software package that statistically determines significant clusters. Application of Cytocipher to normal tissue, development, disease, and large-scale atlas data reveals the broad applicability and power of Cytocipher to generate biological insights in numerous contexts. This included the identification of cell types not previously described in the datasets analysed, such as CD8+ T cell subtypes in human peripheral blood mononuclear cells; cell lineage intermediate states during mouse pancreas development; and subpopulations of luminal epithelial cells over-represented in prostate cancer. Cytocipher also scales to large datasets with high-test performance, as shown by application to the Tabula Sapiens Atlas representing >480 000 cells. Cytocipher is a novel and generalizable method that statistically determines transcriptionally distinct and programmatically reproducible clusters from single-cell data. AVAILABILITY AND IMPLEMENTATION: The software version used for this manuscript has been deposited on Zenodo (https://doi.org/10.5281/zenodo.8089546), and is also available via github (https://github.com/BradBalderson/Cytocipher).


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica , Animales , Ratones , Humanos , Análisis de Secuencia de ARN/métodos , Perfilación de la Expresión Génica/métodos , Leucocitos Mononucleares , Análisis de Expresión Génica de una Sola Célula , Análisis de la Célula Individual , Programas Informáticos
9.
Cell ; 139(5): 969-82, 2009 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19945380

RESUMEN

Neural progenitors generate distinct cell types at different stages, but the mechanisms controlling these temporal transitions are poorly understood. In the Drosophila CNS, a cascade of transcription factors, the "temporal gene cascade," has been identified that acts to alter progenitor competence over time. However, many CNS lineages display broad temporal windows, and it is unclear how broad windows progress into subwindows that generate unique cell types. We have addressed this issue in an identifiable Drosophila CNS lineage and find that a broad castor temporal window is subdivided by two different feed-forward loops, both of which are triggered by castor itself. The first loop acts to specify a unique cell fate, whereas the second loop suppresses the first loop, thereby allowing for the generation of alternate cell fates. This mechanism of temporal and "subtemporal" genes acting in opposing feed-forward loops may be used by many stem cell lineages to generate diversity.


Asunto(s)
Drosophila melanogaster/citología , Ganglios de Invertebrados/citología , Redes Reguladoras de Genes , Neuronas/citología , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Células Madre/citología , Factores de Transcripción/metabolismo
10.
Nucleic Acids Res ; 50(3): 1280-1296, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35048973

RESUMEN

A prominent aspect of most, if not all, central nervous systems (CNSs) is that anterior regions (brain) are larger than posterior ones (spinal cord). Studies in Drosophila and mouse have revealed that Polycomb Repressor Complex 2 (PRC2), a protein complex responsible for applying key repressive histone modifications, acts by several mechanisms to promote anterior CNS expansion. However, it is unclear what the full spectrum of PRC2 action is during embryonic CNS development and how PRC2 intersects with the epigenetic landscape. We removed PRC2 function from the developing mouse CNS, by mutating the key gene Eed, and generated spatio-temporal transcriptomic data. To decode the role of PRC2, we developed a method that incorporates standard statistical analyses with probabilistic deep learning to integrate the transcriptomic response to PRC2 inactivation with epigenetic data. This multi-variate analysis corroborates the central involvement of PRC2 in anterior CNS expansion, and also identifies several unanticipated cohorts of genes, such as proliferation and immune response genes. Furthermore, the analysis reveals specific profiles of regulation via PRC2 upon these gene cohorts. These findings uncover a differential logic for the role of PRC2 upon functionally distinct gene cohorts that drive CNS anterior expansion. To support the analysis of emerging multi-modal datasets, we provide a novel bioinformatics package that integrates transcriptomic and epigenetic datasets to identify regulatory underpinnings of heterogeneous biological processes.


Asunto(s)
Sistema Nervioso Central/embriología , Complejo Represivo Polycomb 2 , Animales , Embrión de Mamíferos/metabolismo , Histonas/genética , Histonas/metabolismo , Ratones , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo
11.
Cell Tissue Res ; 391(2): 269-286, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36512054

RESUMEN

The central nervous system contains a daunting number of different cell types. Understanding how each cell acquires its fate remains a major challenge for neurobiology. The developing embryonic ventral nerve cord (VNC) of Drosophila melanogaster has been a powerful model system for unraveling the basic principles of cell fate specification. This pertains specifically to neuropeptide neurons, which typically are stereotypically generated in discrete subsets, allowing for unambiguous single-cell resolution in different genetic contexts. Here, we study the specification of the OrcoA-LA neurons, characterized by the expression of the neuropeptide Orcokinin A and located laterally in the A1-A5 abdominal segments of the VNC. We identified the progenitor neuroblast (NB; NB5-3) and the temporal window (castor/grainyhead) that generate the OrcoA-LA neurons. We also describe the role of the Ubx, abd-A, and Abd-B Hox genes in the segment-specific generation of these neurons. Additionally, our results indicate that the OrcoA-LA neurons are "Notch Off" cells, and neither programmed cell death nor the BMP pathway appears to be involved in their specification. Finally, we performed a targeted genetic screen of 485 genes known to be expressed in the CNS and identified nab, vg, and tsh as crucial determinists for OrcoA-LA neurons. This work provides a new neuropeptidergic model that will allow for addressing new questions related to neuronal specification mechanisms in the future.


Asunto(s)
Proteínas de Drosophila , Neuropéptidos , Animales , Drosophila , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neuronas/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Represoras
12.
Development ; 146(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30837222

RESUMEN

The nervous system displays a daunting cellular diversity. Neuronal subtypes differ from each other in several aspects, including their neurotransmitter expression and axon projection. These aspects can converge, but can also diverge, such that neurons expressing the same neurotransmitter may project axons to different targets. It is not well understood how regulatory programs converge/diverge to associate/dissociate different cell fate features. Studies of the Drosophila Tv1 neurons have identified a regulatory cascade, ladybird early→collier→apterous/eyes absent→dimmed, that specifies Tv1 neurotransmitter expression. Here, we conduct genetic and transcriptome analysis to address how other aspects of Tv1 cell fate are governed. We find that an initiator terminal selector gene triggers a feedforward loop that branches into different subroutines, each of which establishes different features of this one unique neuronal cell fate.


Asunto(s)
Drosophila melanogaster/genética , Redes Reguladoras de Genes , Neuronas/citología , Animales , Axones/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Linaje de la Célula , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM/genética , Microscopía Confocal , Neurotransmisores/genética , Análisis de Secuencia de ARN , Transducción de Señal , Factores de Transcripción/genética , Transcriptoma
13.
Development ; 146(13)2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289041

RESUMEN

During cell cycle progression, the activity of the CycE-Cdk2 complex gates S-phase entry. CycE-Cdk2 is inhibited by CDK inhibitors (CKIs) of the Cip/Kip family, which include the human p21Cip1 and Drosophila Dacapo (Dap) proteins. Both the CycE and Cip/Kip family proteins are under elaborate control via protein degradation, mediated by the Cullin-RING ligase (CRL) family of ubiquitin ligase complexes. The CRL complex SCFFbxw7/Ago targets phosphorylated CycE, whereas p21Cip1 and Dap are targeted by the CRL4Cdt2 complex, binding to the PIP degron. The role of CRL-mediated degradation of CycE and Cip/Kip proteins during CNS development is not well understood. Here, we analyse the role of ago (Fbxw7)-mediated CycE degradation, and of Dap and p21Cip1 degradation during Drosophila CNS development. We find that ago mutants display over-proliferation, accompanied by elevated CycE expression levels. By contrast, expression of PIP degron mutant Dap and p21Cip1 transgenes inhibit proliferation. However, surprisingly, this is also accompanied by elevated CycE levels. Hence, ago mutation and PIP degron Cip/Kip transgenic expression trigger opposite effects on proliferation, but similar effects on CycE levels.


Asunto(s)
Proliferación Celular/genética , Ciclina E/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas F-Box/genética , Mutación , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos/metabolismo , Animales , Animales Modificados Genéticamente , Sistema Nervioso Central/citología , Sistema Nervioso Central/embriología , Ciclina E/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiología , Drosophila melanogaster , Embrión de Mamíferos , Proteínas F-Box/fisiología , Mutación/fisiología , Proteínas Nucleares/química , Fragmentos de Péptidos/química , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/fisiología , Estabilidad Proteica
14.
PLoS Biol ; 17(2): e3000163, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30807568

RESUMEN

During central nervous system (CNS) development, genetic programs establish neural stem cells and drive both stem and daughter cell proliferation. However, the prominent anterior expansion of the CNS implies anterior-posterior (A-P) modulation of these programs. In Drosophila, a set of neural stem cell factors acts along the entire A-P axis to establish neural stem cells. Brain expansion results from enhanced stem and daughter cell proliferation, promoted by a Polycomb Group (PcG)->Homeobox (Hox) homeotic network. But how does PcG->Hox modulate neural-stem-cell-factor activity along the A-P axis? We find that the PcG->Hox network creates an A-P expression gradient of neural stem cell factors, thereby driving a gradient of proliferation. PcG mutants can be rescued by misexpression of the neural stem cell factors or by mutation of one single Hox gene. Hence, brain expansion results from anterior enhancement of core neural-stem-cell-factor expression, mediated by PcG repression of brain Hox expression.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Proteínas de Homeodominio/genética , Células-Madre Neurales/metabolismo , Proteínas del Grupo Polycomb/genética , Factor de Células Madre/genética , Animales , Encéfalo/crecimiento & desarrollo , Proliferación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Homeodominio/metabolismo , Mutación , Células-Madre Neurales/citología , Neurogénesis/genética , Proteínas del Grupo Polycomb/metabolismo , Transducción de Señal , Factor de Células Madre/metabolismo
15.
Development ; 145(7)2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29530878

RESUMEN

A conserved feature of the central nervous system (CNS) is the prominent expansion of anterior regions (brain) compared with posterior (nerve cord). The cellular and regulatory processes driving anterior CNS expansion are not well understood in any bilaterian species. Here, we address this expansion in Drosophila and mouse. We find that, compared with the nerve cord, the brain displays extended progenitor proliferation, more elaborate daughter cell proliferation and more rapid cell cycle speed in both Drosophila and mouse. These features contribute to anterior CNS expansion in both species. With respect to genetic control, enhanced brain proliferation is severely reduced by ectopic Hox gene expression, by either Hox misexpression or by loss of Polycomb group (PcG) function. Strikingly, in PcG mutants, early CNS proliferation appears to be unaffected, whereas subsequent brain proliferation is severely reduced. Hence, a conserved PcG-Hox program promotes the anterior expansion of the CNS. The profound differences in proliferation and in the underlying genetic mechanisms between brain and nerve cord lend support to the emerging concept of separate evolutionary origins of these two CNS regions.


Asunto(s)
Sistema Nervioso Central/crecimiento & desarrollo , Genes Homeobox/genética , Proteínas del Grupo Polycomb/metabolismo , Animales , División Celular Asimétrica/genética , Ciclo Celular/genética , Proliferación Celular/genética , Sistema Nervioso Central/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Ratones , Neurogénesis/genética , Proteínas del Grupo Polycomb/genética
16.
PLoS Genet ; 14(8): e1007496, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30133436

RESUMEN

During embryonic development, a number of genetic cues act to generate neuronal diversity. While intrinsic transcriptional cascades are well-known to control neuronal sub-type cell fate, the target cells can also provide critical input to specific neuronal cell fates. Such signals, denoted retrograde signals, are known to provide critical survival cues for neurons, but have also been found to trigger terminal differentiation of neurons. One salient example of such target-derived instructive signals pertains to the specification of the Drosophila FMRFamide neuropeptide neurons, the Tv4 neurons of the ventral nerve cord. Tv4 neurons receive a BMP signal from their target cells, which acts as the final trigger to activate the FMRFa gene. A recent FMRFa-eGFP genetic screen identified several genes involved in Tv4 specification, two of which encode components of the U5 subunit of the spliceosome: brr2 (l(3)72Ab) and Prp8. In this study, we focus on the role of RNA processing during target-derived signaling. We found that brr2 and Prp8 play crucial roles in controlling the expression of the FMRFa neuropeptide specifically in six neurons of the VNC (Tv4 neurons). Detailed analysis of brr2 revealed that this control is executed by two independent mechanisms, both of which are required for the activation of the BMP retrograde signaling pathway in Tv4 neurons: (1) Proper axonal pathfinding to the target tissue in order to receive the BMP ligand. (2) Proper RNA splicing of two genes in the BMP pathway: the thickveins (tkv) gene, encoding a BMP receptor subunit, and the Medea gene, encoding a co-Smad. These results reveal involvement of specific RNA processing in diversifying neuronal identity within the central nervous system.


Asunto(s)
Empalme Alternativo , Proteínas de Drosophila/fisiología , Drosophila/genética , FMRFamida/fisiología , Neuronas/fisiología , ARN Helicasas/fisiología , Factores de Empalme de ARN/fisiología , Animales , Diferenciación Celular , Sistema Nervioso Central/fisiología , Drosophila/fisiología , Proteínas de Drosophila/genética , FMRFamida/genética , Regulación del Desarrollo de la Expresión Génica , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , ARN Helicasas/genética , Factores de Empalme de ARN/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/fisiología , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/fisiología , Análisis de Secuencia de ARN , Transducción de Señal , Empalmosomas , Factores de Transcripción/genética , Factores de Transcripción/fisiología
17.
Neurobiol Dis ; 146: 105079, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32961270

RESUMEN

Microtubule Associated Protein Tau (MAPT) forms proteopathic aggregates in several diseases. The G273R tau mutation, located in the first repeat region, was found by exome sequencing in a patient who presented with dementia and parkinsonism. We herein return to pathological examination which demonstrated tau immunoreactivity in neurons and glia consistent of mixed progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) features. To rationalize the pathological findings, we used molecular biophysics to characterize the mutation in more detail in vitro and in Drosophila. The G273R mutation increases the aggregation propensity of 4-repeat (4R) tau and alters the tau binding affinity towards microtubules (MTs) and F-actin. Tau aggregates in PSP and CBD are predominantly 4R tau. Our data suggest that the G273R mutation induces a shift in pool of 4R tau by lower F-actin affinity, alters the conformation of MT bound 4R tau, while increasing chaperoning of 3R tau by binding stronger to F-actin. The mutation augmented fibrillation of 4R tau initiation in vitro and in glial cells in Drosophila and showed preferential seeding of 4R tau in vitro suggestively causing a late onset 4R tauopathy reminiscent of PSP and CBD.


Asunto(s)
Encéfalo/patología , Neuronas/metabolismo , Parálisis Supranuclear Progresiva/metabolismo , Tauopatías/patología , Animales , Enfermedades de los Ganglios Basales/metabolismo , Encéfalo/metabolismo , Drosophila , Mutación/genética , Neuroglía/metabolismo
18.
Adv Exp Med Biol ; 1218: 39-58, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32060870

RESUMEN

During central nervous system (CNS) development, a complex series of events play out, starting with the establishment of neural progenitor cells, followed by their asymmetric division and formation of lineages and the differentiation of neurons and glia. Studies in the Drosophila melanogaster embryonic CNS have revealed that the Notch signal transduction pathway plays at least five different and distinct roles during these events. Herein, we review these many faces of Notch signalling and discuss the mechanisms that ensure context-dependent and compartment-dependent signalling. We conclude by discussing some outstanding issues regarding Notch signalling in this system, which likely have bearing on Notch signalling in many species.


Asunto(s)
Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Animales
19.
PLoS Genet ; 13(4): e1006729, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28414802

RESUMEN

The extensive genetic regulatory flows underlying specification of different neuronal subtypes are not well understood at the molecular level. The Nplp1 neuropeptide neurons in the developing Drosophila nerve cord belong to two sub-classes; Tv1 and dAp neurons, generated by two distinct progenitors. Nplp1 neurons are specified by spatial cues; the Hox homeotic network and GATA factor grn, and temporal cues; the hb -> Kr -> Pdm -> cas -> grh temporal cascade. These spatio-temporal cues combine into two distinct codes; one for Tv1 and one for dAp neurons that activate a common terminal selector feedforward cascade of col -> ap/eya -> dimm -> Nplp1. Here, we molecularly decode the specification of Nplp1 neurons, and find that the cis-regulatory organization of col functions as an integratory node for the different spatio-temporal combinatorial codes. These findings may provide a logical framework for addressing spatio-temporal control of neuronal sub-type specification in other systems.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Factores de Transcripción GATA/genética , Proteínas con Homeodominio LIM/genética , Neuronas , Neuropéptidos/genética , Factores de Transcripción/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Linaje de la Célula/genética , Proteínas de Unión al ADN/genética , Drosophila melanogaster/crecimiento & desarrollo , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Factores del Dominio POU/genética , Transducción de Señal
20.
Development ; 143(20): 3774-3784, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27578794

RESUMEN

Neural progenitors typically divide asymmetrically to renew themselves, while producing daughters with more limited potential. In the Drosophila embryonic ventral nerve cord, neuroblasts initially produce daughters that divide once to generate two neurons/glia (type I proliferation mode). Subsequently, many neuroblasts switch to generating daughters that differentiate directly (type 0). This programmed type I>0 switch is controlled by Notch signaling, triggered at a distinct point of lineage progression in each neuroblast. However, how Notch signaling onset is gated was unclear. We recently identified Sequoia (Seq), a C2H2 zinc-finger transcription factor with homology to Drosophila Tramtrack (Ttk) and the positive regulatory domain (PRDM) family, as important for lineage progression. Here, we find that seq mutants fail to execute the type I>0 daughter proliferation switch and also display increased neuroblast proliferation. Genetic interaction studies reveal that seq interacts with the Notch pathway, and seq furthermore affects expression of a Notch pathway reporter. These findings suggest that seq may act as a context-dependent regulator of Notch signaling, and underscore the growing connection between Seq, Ttk, the PRDM family and Notch signaling.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Proliferación Celular/genética , Proliferación Celular/fisiología , Proteínas de Unión al ADN/genética , Drosophila , Proteínas de Drosophila/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA