Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 55(3): 357-67, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14987934

RESUMEN

To achieve sustainable range management and avoid or minimize environmental contamination, the Army needs to know the amount of explosives deposited on ranges from different munitions and how these are degraded and transported under different geological and climatic conditions. The physical form of the deposited explosives has a bearing on this problem, yet the shapes and size distributions of the explosive particles remaining after detonations are not known. We collected residues from 8 high-order and 6 low-order non-tactical detonations of TNT-filled 155-mm rounds. We found significant variation in the amount of TNT scattered from the high-order detonations, ranging from 0.00001 to 2% of the TNT in the original shell. All low-order detonations scattered percent-level amounts of TNT. We imaged thousands of TNT particles and determined the size, mass and surface-area distributions of particles collected from one high-order and one low-order detonation. For the high-order detonation, particles smaller than 1 mm contribute most of the mass and surface area of the TNT scattered. For the low-order detonation, most of the scattered TNT mass was in the form of un-heated, centimeter-sized pieces whereas most of the surface area was again from particles smaller than 1 mm. We also observed that the large pieces of TNT disintegrate readily, giving rise to many smaller particles that can quickly dissolve. We suggest picking up the large pieces of TNT before they disintegrate to become point sources of contamination.


Asunto(s)
Explosiones , Contaminantes del Suelo/análisis , Trinitrotolueno/química , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Nieve
2.
Bioresour Technol ; 103(1): 293-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22055095

RESUMEN

Our lab and most others have not been able to close a carbon balance for fermentation by the thermophilic, cellulolytic anaerobe, Clostridium thermocellum. We undertook a detailed accounting of product formation in C. thermocellum ATCC 27405. Elemental analysis revealed that for both cellulose (Avicel) and cellobiose, ≥92% of the substrate carbon utilized could be accounted for in the pellet, supernatant and off-gas when including sampling. However, 11.1% of the original substrate carbon was found in the liquid phase and not in the form of commonly-measured fermentation products--ethanol, acetate, lactate, and formate. Further detailed analysis revealed all the products to be <720 da and have not usually been associated with C. thermocellum fermentation, including malate, pyruvate, uracil, soluble glucans, and extracellular free amino acids. By accounting for these products, 92.9% and 93.2% of the final product carbon was identified during growth on cellobiose and Avicel, respectively.


Asunto(s)
Carbono/metabolismo , Clostridium thermocellum/fisiología , Fermentación/fisiología , Aminoácidos/análisis , Celobiosa/farmacología , Clostridium thermocellum/efectos de los fármacos , Clostridium thermocellum/crecimiento & desarrollo , Fermentación/efectos de los fármacos , Nitrógeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA