Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Cell ; 82(20): 3826-3839.e9, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36113481

RESUMEN

Ribosomal RNAs (rRNAs) are the most abundant cellular RNAs, and their synthesis from rDNA repeats by RNA polymerase I accounts for the bulk of all transcription. Despite substantial variation in rRNA transcription rates across cell types, little is known about cell-type-specific factors that bind rDNA and regulate rRNA transcription to meet tissue-specific needs. Using hematopoiesis as a model system, we mapped about 2,200 ChIP-seq datasets for 250 transcription factors (TFs) and chromatin proteins to human and mouse rDNA and identified robust binding of multiple TF families to canonical TF motifs on rDNA. Using a 47S-FISH-Flow assay developed for nascent rRNA quantification, we demonstrated that targeted degradation of C/EBP alpha (CEBPA), a critical hematopoietic TF with conserved rDNA binding, caused rapid reduction in rRNA transcription due to reduced RNA Pol I occupancy. Our work identifies numerous potential rRNA regulators and provides a template for dissection of TF roles in rRNA transcription.


Asunto(s)
ARN Polimerasa I , Factores de Transcripción , Humanos , Ratones , Animales , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ARN Ribosómico/genética , Transcripción Genética , ADN Ribosómico/genética , ARN , Cromatina
2.
PLoS Biol ; 20(3): e3001594, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35358174

RESUMEN

Mechanistic target of rapamycin complex I (mTORC1) is central to cellular metabolic regulation. mTORC1 phosphorylates a myriad of substrates, but how different substrate specificity is conferred on mTORC1 by different conditions remains poorly defined. Here, we show how loss of the mTORC1 regulator folliculin (FLCN) renders mTORC1 specifically incompetent to phosphorylate TFE3, a master regulator of lysosome biogenesis, without affecting phosphorylation of other canonical mTORC1 substrates, such as S6 kinase. FLCN is a GTPase-activating protein (GAP) for RagC, a component of the mTORC1 amino acid (AA) sensing pathway, and we show that active RagC is necessary and sufficient to recruit TFE3 onto the lysosomal surface, allowing subsequent phosphorylation of TFE3 by mTORC1. Active mutants of RagC, but not of RagA, rescue both phosphorylation and lysosomal recruitment of TFE3 in the absence of FLCN. These data thus advance the paradigm that mTORC1 substrate specificity is in part conferred by direct recruitment of substrates to the subcellular compartments where mTORC1 resides and identify potential targets for specific modulation of specific branches of the mTOR pathway.


Asunto(s)
Lisosomas , Serina-Treonina Quinasas TOR , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
3.
Blood ; 136(15): 1773-1782, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32542378

RESUMEN

G protein-coupled receptors are critical mediators of platelet activation whose signaling can be modulated by members of the regulator of G protein signaling (RGS) family. The 2 most abundant RGS proteins in human and mouse platelets are RGS10 and RGS18. While each has been studied individually, critical questions remain about the overall impact of this mode of regulation in platelets. Here, we report that mice missing both proteins show reduced platelet survival and a 40% decrease in platelet count that can be partially reversed with aspirin and a P2Y12 antagonist. Their platelets have increased basal (TREM)-like transcript-1 expression, a leftward shift in the dose/response for a thrombin receptor-activating peptide, an increased maximum response to adenosine 5'-diphosphate and TxA2, and a greatly exaggerated response to penetrating injuries in vivo. Neither of the individual knockouts displays this constellation of findings. RGS10-/- platelets have an enhanced response to agonists in vitro, but platelet count and survival are normal. RGS18-/- mice have a 15% reduction in platelet count that is not affected by antiplatelet agents, nearly normal responses to platelet agonists, and normal platelet survival. Megakaryocyte number and ploidy are normal in all 3 mouse lines, but platelet recovery from severe acute thrombocytopenia is slower in RGS18-/- and RGS10-/-18-/- mice. Collectively, these results show that RGS10 and RGS18 have complementary roles in platelets. Removing both at the same time discloses the extent to which this regulatory mechanism normally controls platelet reactivity in vivo, modulates the hemostatic response to injury, promotes platelet production, and prolongs platelet survival.


Asunto(s)
Plaquetas/metabolismo , Activación Plaquetaria/genética , Proteínas RGS/genética , Trombopoyesis/genética , Animales , Plaquetas/efectos de los fármacos , Supervivencia Celular/genética , Ratones , Ratones Noqueados , Fosforilación , Factor de Activación Plaquetaria/farmacología , Activación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Recuento de Plaquetas , Proteínas RGS/metabolismo , Trombopoyesis/efectos de los fármacos
4.
Blood ; 132(10): 1027-1038, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30042096

RESUMEN

We hypothesized that megakaryocyte (MK) phosphoinositide signaling mediated by phosphatidylinositol transfer proteins (PITPs) contributes to hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) regulation. Conditional knockout mice lacking PITPs specifically in MKs and platelets (pitpα-/- and pitpα-/-/ß-/-) bone marrow (BM) manifested decreased numbers of HSCs, MK-erythrocyte progenitors, and cycling HPCs. Further, pitpα-/-/ß-/- BM had significantly reduced engrafting capability in competitive transplantation and limiting dilution analysis. Conditioned media (CM) from cultured pitpα-/- and pitpα-/-/ß-/- BM MKs contained higher levels of transforming growth factor ß1 (TGF-ß1) and interleukin-4 (IL-4), among other myelosuppressive cytokines, than wild-type BM MKs. Correspondingly, BM flush fluid from pitpα-/- and pitpα-/-/ß-/- mice had higher concentrations of TGF-ß1. CM from pitpα-/- and pitpα-/-/ß-/- MKs significantly suppressed HPC colony formation, which was completely extinguished in vitro by neutralizing anti-TGF-ß antibody, and treatment of pitpα-/-/ß-/- mice in vivo with anti-TGF-ß antibodies completely reverted their defects in BM HSC and HPC numbers. TGF-ß and IL-4 synergized to inhibit HPC colony formation in vitro. Electron microscopy analysis of pitpα-/-/ß-/- MKs revealed ultrastructural defects with depleted α-granules and large, misshaped multivesicular bodies. Von Willebrand factor and thrombospondin-1, like TGF-ß, are stored in MK α-granules and were also elevated in CM of cultured pitpα-/-/ß-/- MKs. Altogether, these data show that ablating PITPs in MKs indirectly dysregulates hematopoiesis in the BM by disrupting α-granule physiology and secretion of TGF-ß1.


Asunto(s)
Médula Ósea/metabolismo , Hematopoyesis/fisiología , Megacariocitos/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Factor de Crecimiento Transformador beta1/biosíntesis , Animales , Interleucina-4/genética , Interleucina-4/metabolismo , Megacariocitos/citología , Ratones , Ratones Noqueados , Proteínas de Transferencia de Fosfolípidos/genética , Trombospondina 1/genética , Trombospondina 1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
5.
Cell Metab ; 35(11): 2077-2092.e6, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37802078

RESUMEN

Cold-induced thermogenesis (CIT) is widely studied as a potential avenue to treat obesity, but a thorough understanding of the metabolic changes driving CIT is lacking. Here, we present a comprehensive and quantitative analysis of the metabolic response to acute cold exposure, leveraging metabolomic profiling and minimally perturbative isotope tracing studies in unanesthetized mice. During cold exposure, brown adipose tissue (BAT) primarily fueled the tricarboxylic acid (TCA) cycle with fat in fasted mice and glucose in fed mice, underscoring BAT's metabolic flexibility. BAT minimally used branched-chain amino acids or ketones, which were instead avidly consumed by muscle during cold exposure. Surprisingly, isotopic labeling analyses revealed that BAT uses glucose largely for TCA anaplerosis via pyruvate carboxylation. Finally, we find that cold-induced hepatic gluconeogenesis is critical for CIT during fasting, demonstrating a key functional role for glucose metabolism. Together, these findings provide a detailed map of the metabolic rewiring driving acute CIT.


Asunto(s)
Respuesta al Choque por Frío , Termogénesis , Animales , Ratones , Termogénesis/fisiología , Tejido Adiposo Pardo/metabolismo , Glucosa/metabolismo , Metabolismo Energético , Frío
6.
Blood Adv ; 7(16): 4233-4246, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-36930803

RESUMEN

Platelets use signal transduction pathways facilitated by class I phosphatidylinositol transfer proteins (PITPs). The 2 mammalian class I PITPs, PITPα and PITPß, are single PITP domain soluble proteins that are encoded by different genes and share 77% sequence identity, although their individual roles in mammalian biology remain uncharacterized. These proteins are believed to shuttle phosphatidylinositol and phosphatidylcholine between separate intracellular membrane compartments, thereby regulating phosphoinositide synthesis and second messenger formation. Previously, we observed that platelet-specific deletion of PITPα, the predominantly expressed murine PITP isoform, had no effect on hemostasis but impaired tumor metastasis formation and disrupted phosphoinositide signaling. Here, we found that mice lacking the less expressed PITPß in their platelets exhibited a similar phenotype. However, in contrast to PITPα-null platelet lysates, which have impaired lipid transfer activity, PITPß-null platelet lysates have essentially normal lipid transfer activity, although both isoforms contribute to phosphoinositide synthesis in vitro. Moreover, we found that platelet-specific deletion of both PITPs led to ex vivo platelet aggregation/secretion and spreading defects, impaired tail bleeding, and profound tumor dissemination. Our study also demonstrated that PITP isoforms are required to maintain endogenous phosphoinositide PtdInsP2 levels and agonist-stimulated second messenger formation. The data shown here demonstrate that the 2 isoforms are functionally overlapping and that a single isoform is able to maintain the homeostasis of platelets. However, both class I PITP isoforms contribute to phosphoinositide signaling in platelets through distinct biochemical mechanisms or different subcellular domains.


Asunto(s)
Plaquetas , Proteínas de Transferencia de Fosfolípidos , Animales , Ratones , Tiempo de Sangría , Plaquetas/metabolismo , Eliminación de Gen , Homeostasis/genética , Ratones Endogámicos C57BL , Neoplasias/genética , Fosfatidilinositoles/biosíntesis , Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transducción de Señal/genética , Trombosis/genética
7.
Nat Metab ; 5(4): 589-606, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37100997

RESUMEN

Elevated levels of plasma branched-chain amino acids (BCAAs) have been associated with insulin resistance and type 2 diabetes since the 1960s. Pharmacological activation of branched-chain α-ketoacid dehydrogenase (BCKDH), the rate-limiting enzyme of BCAA oxidation, lowers plasma BCAAs and improves insulin sensitivity. Here we show that modulation of BCKDH in skeletal muscle, but not liver, affects fasting plasma BCAAs in male mice. However, despite lowering BCAAs, increased BCAA oxidation in skeletal muscle does not improve insulin sensitivity. Our data indicate that skeletal muscle controls plasma BCAAs, that lowering fasting plasma BCAAs is insufficient to improve insulin sensitivity and that neither skeletal muscle nor liver account for the improved insulin sensitivity seen with pharmacological activation of BCKDH. These findings suggest potential concerted contributions of multiple tissues in the modulation of BCAA metabolism to alter insulin sensitivity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Masculino , Ratones , Animales , Diabetes Mellitus Tipo 2/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Músculo Esquelético/metabolismo , Oxidación-Reducción
8.
Science ; 376(6590): eabf8271, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35420934

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) remain without effective therapies. The mechanistic target of rapamycin complex 1 (mTORC1) pathway is a potential therapeutic target, but conflicting interpretations have been proposed for how mTORC1 controls lipid homeostasis. We show that selective inhibition of mTORC1 signaling in mice, through deletion of the RagC/D guanosine triphosphatase-activating protein folliculin (FLCN), promotes activation of transcription factor E3 (TFE3) in the liver without affecting other mTORC1 targets and protects against NAFLD and NASH. Disease protection is mediated by TFE3, which both induces lipid consumption and suppresses anabolic lipogenesis. TFE3 inhibits lipogenesis by suppressing proteolytic processing and activation of sterol regulatory element-binding protein-1c (SREBP-1c) and by interacting with SREBP-1c on chromatin. Our data reconcile previously conflicting studies and identify selective inhibition of mTORC1 as a potential approach to treat NASH and NAFLD.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina , Enfermedad del Hígado Graso no Alcohólico , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Eliminación de Gen , Hígado/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/terapia , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
9.
J Clin Invest ; 128(1): 125-140, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29202466

RESUMEN

V617F driver mutation of JAK2 is the leading cause of the Philadelphia-chromosome-negative myeloproliferative neoplasms (MPNs). Although thrombosis is a leading cause of mortality and morbidity in MPNs, the mechanisms underlying their pathogenesis are unclear. Here, we identified pleckstrin-2 (Plek2) as a downstream target of the JAK2/STAT5 pathway in erythroid and myeloid cells, and showed that it is upregulated in a JAK2V617F-positive MPN mouse model and in patients with MPNs. Loss of Plek2 ameliorated JAK2V617F-induced myeloproliferative phenotypes including erythrocytosis, neutrophilia, thrombocytosis, and splenomegaly, thereby reverting the widespread vascular occlusions and lethality in JAK2V617F-knockin mice. Additionally, we demonstrated that a reduction in red blood cell mass was the main contributing factor in the reversion of vascular occlusions. Thus, our study identifies Plek2 as an effector of the JAK2/STAT5 pathway and a key factor in the pathogenesis of JAK2V617F-induced MPNs, pointing to Plek2 as a viable target for the treatment of MPNs.


Asunto(s)
Neoplasias Hematológicas/metabolismo , Janus Quinasa 2/metabolismo , Proteínas de la Membrana/metabolismo , Mutación Missense , Trastornos Mieloproliferativos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/metabolismo , Sustitución de Aminoácidos , Animales , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Humanos , Janus Quinasa 2/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Proteínas de Neoplasias/genética , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo
10.
Nat Commun ; 8(1): 1216, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29084966

RESUMEN

Platelets are increasingly recognized for their contributions to tumor metastasis. Here, we show that the phosphoinositide signaling modulated by phosphatidylinositol transfer protein type α (PITPα), a protein which shuttles phosphatidylinositol between organelles, is essential for platelet-mediated tumor metastasis. PITPα-deficient platelets have reduced intracellular pools of phosphoinositides and an 80% reduction in IP3 generation upon platelet activation. Unexpectedly, mice lacking platelet PITPα form thrombi normally at sites of intravascular injuries. However, following intravenous injection of tumor cells, mice lacking PITPα develop fewer lung metastases due to a reduction of fibrin formation surrounding the tumor cells, rendering the metastases susceptible to mucosal immunity. These findings demonstrate that platelet PITPα-mediated phosphoinositide signaling is inconsequential for in vivo hemostasis, yet is critical for in vivo dissemination. Moreover, this demonstrates that signaling pathways within platelets may be segregated into pathways that are essential for thrombosis formation and pathways that are important for non-hemostatic functions.


Asunto(s)
Plaquetas/metabolismo , Neoplasias Pulmonares/secundario , Proteínas de Transferencia de Fosfolípidos/metabolismo , Trombosis/metabolismo , Animales , Anticoagulantes/farmacología , Plaquetas/efectos de los fármacos , Plaquetas/patología , Fibrina/metabolismo , Eliminación de Gen , Hemostasis/efectos de los fármacos , Hiperplasia , Inmunidad Mucosa/efectos de los fármacos , Inositol 1,4,5-Trifosfato/metabolismo , Integrasas/metabolismo , Tejido Linfoide/patología , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Agregación Plaquetaria/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Trombina/metabolismo , Trombosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA